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Managing code transformations
for better performance portability

Thiago SFX Teixeira , William Gropp and David Padua

Abstract
Code optimization is an intricate task that is getting more complex as computing systems evolve. Managing the program
optimization process, including the implementation and evaluation of code variants, is tedious, inefficient, and errors are
likely to be introduced in the process. Moreover, because each platform typically requires a different sequence of
transformations to fully harness its computing power, the optimization process complexity grows as new platforms are
adopted. To address these issues, systems and frameworks have been proposed to automate the code optimization
process. They, however, have not been widely adopted and are primarily used by experts with deep knowledge about
underlying architecture and compiler intricacies. This article describes the requirements that we believe necessary for
making automatic performance tuning more broadly used, especially in complex, long-lived high-performance computing
applications. Besides discussing limitations of current systems and strategies to overcome these, we describe the design of
a system that is able to semi-automatically generate efficient platform-specific code. In the proposed system, the code
optimization is programmer-guided, separately from application code, on an external file in what we call optimization
programming. The language to program the optimization process is able to represent complex collections of transfor-
mations and, as a result, generate efficient platform-specific code. A database manages different optimized versions of
code regions, providing a pragmatic approach to performance portability, and the framework itself has separate com-
ponents, allowing the optimized code to be used on systems without installing all of the modules required for the code
generation. We present experiments on two different platforms to illustrate the generation of efficient platform-specific
code that performs comparable to hand-optimized, vendor-provided code.
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1. Introduction

The push for more performance has increased the com-

plexity of hardware platforms over time. It is the reason

behind the addition of new features and the development

of accelerators. New memory technologies, deep cache

hierarchies, branch prediction, out-of-order execution,

and speculative execution complicate the use and perfor-

mance modeling of these highly complex platforms. They

make programming harder and performance less predict-

able. Moreover, each hardware platform commonly

requires a different sequence of optimizations to attain a

high fraction of its nominal peak speed. Software devel-

opers must devote significant time to benefit from the

computing power of modern CPUs and accelerators as the

gap between the performance of hand-tuned and

compiler-generated code has grown substantially.

As platforms evolve and new ones are adopted, pro-

grams must often be altered by the numerous optimizations

needed for each target environment (hardware and software

stack) to approximate maximum computing power. As a

result, the code becomes unrecognizable over time, hard to

maintain, and challenging to modify. Furthermore, as the

code evolves, it is hard to keep the optimizations up to date.

The need to develop and maintain separate versions of the

application for each of the target platforms is an immense

undertaking, especially for the large and long-lived appli-

cations commonly found in the high-performance comput-

ing (HPC) community.

An application code is portable if it runs on a diverse set

of platforms without needing significant modifications and
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produces a similar output. Ideally, the application code

would also be performance portable and achieve high per-

formance across a variety of platforms (Pennycook et al.,

2016; Wolfe, 2016).

However, creating performance portable code is diffi-

cult as the optimization space is very large, and there are

many important decisions that affect application efficiency

on the target machines. These include not only the order of

operations within large loops but also the choice and layout

of data structure. The optimal or near-optimal choices often

differ depending on the target platform.

The selection of architectures and algorithms and their

correspondence is crucial to attaining high performance.

This selection is not straightforward; it can span from

using specific algorithms selected for one particular archi-

tecture to selecting very general algorithms developed

without any architecture insight. In the former case, high

performance is achieved at the expense of portability

given that it is so specific that it cannot execute on differ-

ent architectures. In the latter case, the portability comes

at the expense of performance, because without any

insight on the architecture, it is very difficult to efficiently

exploit the resources available.

Selecting the algorithm among many to solve a specific

problem is the first and foremost decision. It also highly

depends on the target machine and often on the problem

size and other characteristics of the input. In some cases,

multiple fine-grained algorithmic selection can be very

advantageous as shown by Ansel et al. (2009). This com-

position complicates even more the algorithm selection

task given the combinatorial explosion of possibilities. For

instance, the optimal sorting method would use different

algorithms based on the number of elements to be sorted.

For very few elements, the insertion sort is faster, whereas

for medium number of elements, the quicksort is faster; for

very large inputs, the radix sort results in better perfor-

mance. It is also possible to have a composition among the

three different algorithms, once quick sort and radix sort

recursively decomposes the problem in subproblems until it

is small enough to apply the insertion sort (Li et al., 2004).

Choosing the data structure appropriately may increase

data locality and reduce cache misses. Data placement in a

multidimensional array can affect performance depending

how the array is linearized in memory. For some applica-

tions, converting the data between different structures on

the fly may improve performance, despite the cost of the

conversion.

The use of appropriate compiler flags typically leads to a

speedup without a significant increase in compilation

time. The flags are applicable to the whole code and the

heuristics used by compilers to apply transformations do

not guarantee improvement in all cases. Notably,

architecture-specific compiler flags have a higher chance

of better results, because the heuristics can assume a nar-

rower scenario. The use of compiler directives or pragmas

is also an interesting approach for isolating the optimiza-

tions to specific code regions where performance is crucial.

Nonetheless, these directives are not standardized across

compilers, leaving the code less portable. The results

achieved by selecting compiler flags and directives rarely

remain the same for new processors, requiring the experi-

ments to be performed all over every time a new one is

released.

We rely on an approach that decouples the performance

expert role from the application expert role (separation of

concerns). The baseline version defined by the developer

should be as readable as possible and avoid any platform-

or compiler-specific optimizations. The application of the

transformations to the baseline is controlled from an exter-

nal file in what we refer as optimization programming. This

approach allows the use of architecture-specific optimiza-

tions while keeping the code maintainable in the long term.

A database of different variants for different architectures

(and possibly different problem sizes and other input para-

meters) is also maintained.

There have been a number of tools to ease the burden of

the optimization process on the programmer. They com-

monly require manual refactoring (Ansel et al., 2009; Fata-

halian et al., 2006; Hartono et al., 2009) and provide little

control over the steps being carried out. They also are not

prepared to coexist with other tools and cannot be incre-

mentally adopted (Basili et al., 2008).

In the following list, we describe what we believe are the

requirements for making autotuning more accepted in

applications. These requirements are based on our experi-

ences with several applications, and in particular with a

large, complex multi-physics application, being developed

as part of the Center for the Exascale Simulation of Plasma-

Coupled Combustion (XPACC, 2018):

1. A straightforward, clean version of the code that is

understandable by the computational scientist and

program developer. This is the baseline code and is

the one that may be modified by the code developers.

2. The code should run in the absence of any tool, so

that the developers are comfortable that their code

will run even if the system fails for some reason.

3. A clean way to provide extra semantic information

is needed; for example, this might be to indicate

that a loop is short or long or that a set of functions

is always called in the same order.

4. Code must run with good performance on multiple

platforms and architectures, at least as long as the

same algorithm is appropriate.

5. Because in practice code tuning and optimization

is difficult to make fully automatic, there needs to

be a way for a performance expert to provide addi-

tional, possibly target-specific, information about

optimizations.

6. Because autotuning can be expensive (as many

versions may need to be examined), the system

must store the results of the autotuning step(s) and

use previously found optimized code whenever

possible.
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7. Changes to the baseline code should ensure that

“stale” optimized versions of the code are not used

and preferably replaced by updated versions.

8. Hand-tuned optimizations should be allowed.

9. Using (as opposed to creating) the optimized code

must not require installing the code generation and

autotuning frameworks, as these are often difficult

to install and use on many platforms.

10. The system should make it possible to gather perfor-

mance data from a remote system, permitting the

framework to run on a system on which the autotun-

ing and code transformation tools can be installed.

From these requirements, we made the following design

decisions:

� Use of annotated code, written in C, Cþþ, or For-

tran, with high-level information that marks regions

of code for optimization (addresses 1 and 2).

� Use annotations that only cover high-level,

platform-independent information (addresses 3).

� Maintain platform and tool-dependent information

(e.g. loop-unroll depth) in a separate optimization

file (addresses 5).

� Maintain a database of optimized code, organized by

target platform and other parameters (addresses 4

and 6).

� Maintain, in the database, a hash of the relevant parts

of the code for each transformed section, and this

hash is confirmed before making use of a previously

stored autotuned version (addresses 7).

� Allow the insertion of hand-tuned versions of the

code into the database so that they can be used by

the system in the same way that code generated by

the autotuning step (addresses 5 and 8).

� Separate the steps of determining optimized code

and populating the database from extracting code

from the database to replace labeled code regions

in the baseline version (addresses 9).

� Provide some support for running variants on a

remote system, meaning that the full system need

not be installed on the target system; this is espe-

cially important when the target is a supercomputer

(addresses 9 and 10).

� Allow the inclusion and use of a preferred, cus-

tom version. For some applications and libraries,

there is already a preferred, hand-optimized ver-

sion (e.g. many of the kernel operations in porta-

ble, extensible toolkit for Scientific computation

[PETSc] have manually unrolled loops; Balay

et al., 2018a, 1997). A small change to our

approach accommodates this by placing the base-

line version into the database; this is the version

used by the autotuning tools (addresses 2). We

have not implemented this option, but it is an

important part of the design and do plan to imple-

ment it in the future.

Not included above is the integrated support for debug-

ging code; that is, methods that relate the autotuned code

directly to the original baseline code in a way that can be

presented by a debugger. While desirable and beneficial,

we do not view this as essential, in part because at high

levels of optimizations, compilers often perform complex

code transformations that are not well reflected in the

source code that a debugger may present. While this does

complicate debugging, it is not a new problem. In fact,

because our system stores both the baseline code and the

transformed code (created through source-to-source trans-

formations), it should be easier to debug code in this

approach than relying on transformations handled entirely

within a compiler.

1.1. Our approach

We implemented these design decisions in Locus (Teixeira

et al., 2019). Locus is a semi-automatic approach to assist

performance experts and code developers in the perfor-

mance optimization process of programs developed in

mainstream programming languages (C, Cþþ, and For-

tran). The system is nonprescriptive, which means that if

none of the optimizations can be applied or improve per-

formance, the baseline (original version) is used instead.

Regions of interest in the baseline version are marked

and given an identifier. The optimization program uses this

identifier to specify where to apply each transformation.

Multiple regions with the same identifier will receive the

same optimization steps (not necessarily the same resulting

code).

Locus combines expert knowledge with empirical

search, automates much of the optimization process, and

gives total control to the developers. The system defines an

interface to use external transformation and search mod-

ules. The idea is to have a collaborative environment where

existing modules can be integrated in a single system. This

enables the comparison among modules and the selection

of the one that generates the most performant code.

Locus does not require the installation of any specific

module. Only the ones used require installation. The full

toolset integrated in Locus, however, requires a long and

cumbersome installation process that is hard to replicate in

all target machines. Therefore, the Locus system uses a

database of platform-specific variants that separates the

code generation from the uses of the generated optimized

code. It also has support for a remote empirical search in

which the driver that traverses the optimization space and

the code generation are executed on a different machine

than the target one where the variants are assessed.

The main contributions of this article are:

� a system able to generate, assess, and manage a

database of platform-specific code variants for dif-

ferent code regions that separates code generation

from their uses;
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� a distributed empirical search to populate the data-

base that separates the variants code generation and

their assessment;

� an evaluation of the approach in two different plat-

forms: Intel x86 and IBM Power; and

� an evaluation of the empirical search using a fixed

initial configuration instead of a random one (the

default). The best variant found on Intel x86 was

used as the initial configuration for the search on the

IBM Power. Locus syntax greatly facilitates the def-

inition of the initial configuration of the search.

The next section provides an overview of the related

work. The design and implementation of our system for

managing code transformations are presented next. After

that we present experimental evaluation. We conclude and

talk about future work in the last section.

2. Related work

Optimizing for performance is very dependent on the tar-

get platform as well as the problem domain, which makes

the creation of one-solution-fits-all code extremely

complicated.

There have been a number of projects to develop new

programming models, languages, and tools aimed at pro-

viding programmers with productive means for achieving

performance portability.

As shown in Table 1, we classify the approaches into

High-level abstractions, Non-Programmable, Code Trans-

formations, Custom Languages or Languages Extensions

and Alternative Selection. The high-level programming

abstractions tools provide a limited set of abstractions for

specific domains to represent algorithms. From these repre-

sentations, the tools are able to generate optimized

platform-specific binaries. Steuwer et al. (2015) propose

an approach in which the programmer writes a high-level

expression composed of algorithmic primitives, and using

rewriting rules, they map this high-level expression into a

low-level expression in OpenCL. Halide (Ragan-Kelley

et al., 2017) is a domain-specific language for complex

image processing pipelines that is able to decouple algo-

rithm representation from the schedule of the operations.

The Pochoir stencil compiler (Tang et al., 2011) allows a

programmer to write simple functional specifications for

stencils that are translated into highly optimized implemen-

tation. SPIRAL (Püschel et al., 2005) includes a high-level

mathematical framework that provides the link between the

Table 1. Automatic program optimization approaches.

Domain Optimization domain Optimization time Search method

High-level abstractions
SPIRAL Signal processing Rewriting rules Offline Dynamic programming,

evolutionary (þothers)
Lift General purpose Rewriting rules Offline Bandit
Halide Image processing Scheduling Offline Stochastic
Pochoir Stencils Cache-oblivious algorithm Offline —

Nonprogrammable
FFTW Fast Fourier

transform
Combination of solvers for FFTs Offline Dynamic programming

Atlas Dense linear algebra Blocking, scheduling, and unrolling Offline Exhaustive
OSKI Sparse linear algebra Sparse solvers Online Heuristic
PHiPAC Matrix multiplication Adaptive library generator Offline Heuristic

Code transformations
CHiLL General purpose Loop transformations Offline —
Pluto General purpose Loop Transformations Offline —
POET General purpose Parameterized code transformations Offline —
Orio General purpose Loop transformations Offline Nelder-Mead, simulated

annealing
X Language General purpose Loop transformations Offline Exhaustive

Custom languages or languages extensions
Sequoia General purpose Memory hierarchy aware language Offline —
Petabricks General purpose Algorithmic choices Offline Evolutionary
Kokkos General purpose Abstractions for parallel execution

and data management
Offline —

RAJA General purpose Abstractions for loops and data
layouts

Offline —

Alternative selection
Nitro General purpose Variant selection Offline, online Classification (SVM)
Active Harmony General purpose Parametric traversal Online Nelder-Mead
OpenTuner General purpose Parametric traversal Offline AUC Bandit
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“high” mathematical level of transform algorithms and the

“low” level of their code implementations. It features five

search methods to select among the low-level options:

Exhaustive, Random, Dynamic Programming, Evolution-

ary, and Hill Climbing.

The nonprogrammable approaches differ from the other

approaches in that it does not start with user-written code,

but instead the code is generated directly. These tools carry

out all the tuning process without user intervention. It is

completely automatic and typically uses heuristics to accel-

erate the search of the space of variants. These tools have a

very specific domain, are self-contained, and are used as

libraries by the applications.

For instance, FFTW (Frigo, 1999) is a comprehensive

collection of fast C routines for computing the discrete

Fourier transform (DFT). It does not implement a single

DFT algorithm, but it is structured as a library of routines

that can be composed in many ways, namely a plan. The

plan dictates which routines should be executed and in what

order taking into account the input size and type and which

routines happens to be faster on the underlying hardware.

ATLAS (Whaley and Dongarra, 1998) presents a metho-

dology for the automatic generation of highly efficient

basic linear algebra routines in different architectures. It

isolates the machine-specific features of the operation to

several routines, all of which deal with generating an opti-

mized matrix multiplication that fit in the fastest level

cache. This optimized routine is automatically created by

the generator and uses timings to select the others para-

meters, such as block and loop unrolling factors.

The goal of PHiPAC (Bilmes et al., 1997) is to produce

high-performance linear algebra libraries for a wide range

of systems with minimum effort. The authors developed

parameterized generators that produce code according to

guidelines from a generic model of a set of C compilers

and microprocessors. They also created scripts to automat-

ically tune code for a particular system by varying genera-

tors’ parameters.

OSKI (Vuduc et al., 2005) is a collection of low-level

primitives that are integrated into automatically tuned com-

putational kernels on sparse matrices. Differently from the

previous approaches, where the tuning takes place offline,

OSKI defers the tuning until the runtime to make decisions

of the data structures and code transformations based on the

input matrix and the underlying hardware.

The code transformation tools take as input an initial

version of the code and the transformations to apply to it.

This specification of transformations can take the form of

annotations on the code (Donadio et al., 2006; Hartono

et al., 2009), scripts with commands that represent each

transformation (Chen et al., 2008), or command-line para-

meters. In some tools, the developer can implement their

own program transformations (Yi et al., 2007).

CHiLL (Chen et al., 2008) contains loop transformation

and code generation primitives. It takes as input the original

code and a transformation script with bound parameters

and generates a collection of code versions. POET

(Yi et al., 2007) is an embedded scripting language for

parameterizing complex code transformations so that they

can be empirically tuned. The POET language is designed

to decouple the empirical tuning aspect of performance

optimization from the specifics of any library or compiler.

Another example in this class is Orio (Hartono et al.,

2009), an annotation-based empirical performance-tuning

system that takes annotated C source code as input, gener-

ates code variants of the annotated code, and empirically

evaluates the performance of the generated codes, ulti-

mately selecting the best-performing version to use for

production runs. The X Language (Donadio et al., 2006)

provides pragmas that can perform loop transformations

and code transformations defined as pattern-replacement

rules. Pluto (Bondhugula et al., 2008) automatically gen-

erates tiled code for efficient parallelism and locality

through an affine transformation framework.

Custom languages and language extensions have been

proposed with the goal of providing abstractions that insu-

late algorithmic choices, loop patterns, and data layout

from the underlying platform. Sequoia’s (Fatahalian

et al., 2006) programming model assists the programmer

in structuring bandwidth efficient parallel programs that

remain easily portable to new machines. The abstraction

of tasks are used as self-contained units of computation

isolated in their own local address space, which helps

express parallelism within a hierarchical organization.

Another programming language along with a compiler

is PetaBricks (Ansel et al., 2009). The language incorpo-

rates fine-grained algorithmic choices in program optimi-

zation and allows the specification of different granularity

and corner cases. The autotuner uses a choice dependency

graph that contains the choices for computing each task and

also encodes the implications of different choices on

dependencies. It also contains a dynamic task scheduler

and a runtime library to manage reading, writing, and man-

aging, inputs, outputs, and configurations.

RAJA (Hornung and Keasler, 2014) provides portable

abstractions for loops that include loop transformations,

reductions, scans, atomic operations, data layouts, and

views. Loop bodies and traversals are decoupled via

lambda expressions (loop bodies) and templates (loop tra-

versal methods) and support execution policies for different

programming model back ends. Kokkos (Edwards et al.,

2014) library unifies abstractions for both fine-grain data

parallelism and memory access patterns for performance

portability manycore architectures.

The alternative selection tools assume that either the

user or some other tool provides as input a collection of

variants. The main concern of the designer of tools in this

class is the selection process. As the search space is very

large, the use of efficient techniques on selecting the best

combination of code variants or parameters can drastically

reduce the search time. Some of these tools make the deci-

sion online, whereas others have it defined offline. The

advantage of making the decision online is that the input

features can be used in the decision process (Muralidharan
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et al., 2014). The design of languages, compilers, and

runtime systems for the development and selection of

algorithmic variants has shown to be a successful way of

optimizing irregular iterative and recursive problems on

parallel platforms (Ansel et al., 2009; Fatahalian et al.,

2006).

The Nitro (Muralidharan et al., 2014) framework

focuses on how code variants and meta-information for

variant selection are expressed and uses a classification

technique to select the most appropriate variant during

application’s runtime. The codes are represented through

library calls rather than language extensions. Input features

that significantly affect the variant selection can be calcu-

lated by providing functions to the system. A two-phase

approach is used. First, the application is processed to gen-

erate a model over the code variants that are also provided

by the user. Second, during execution, the production ver-

sion uses the model generated in the first phase and adapts

the execution based on input data.

Active Harmony (Chung and Hollingsworth, 2004)

permits application programmers to express application-

level parameters and automates the process of searching

among a set of alternative implementations. It has been

combined with CHiLL (Tiwari et al., 2011) to search for

the best sequence of loop transformation variants of com-

putationally intensive kernels. The OpenTuner (Ansel

et al., 2014) project presents a new framework for build-

ing domain-specific program autotuners. It features an

extensible configuration and technique representation

able to support complex and user-defined data types and

custom search heuristics.

Some systems attempt to separate the role of the per-

formance tuning expert from the application domain.

This separation can allow the programmer to focus on

application issues and performance tuning at different

points in time. Or, if they are not the same person, make

these two tasks more independent and more productive,

once each expert focus on their own domain. Besides,

multiple tuning specifications can be generated and

tested for different architectures, making the application

performance portable.

Sequoia, for instance, maintains a strict separation

between the algorithm implementation and the machine-

specific optimizations. The autotuning system in Petab-

ricks outputs an application configuration file containing

the choices selected. This file can be either used to run the

application, or it can be used by the compiler to build a

binary with hard-coded choices. CHiLL also has an exter-

nal file containing all the transformations to be applied to

the code, which can be different depending on the

machine specifics.

Another interesting feature of some of these systems is

the automated validation of code variants. Petabricks has an

automated consistency checking to make sure that the

different algorithms solving the same problem produce

consistent results. This helps the user to automatically

detect bugs and increase confidence in correctness. Orio

also supports an automated validation by comparing

numerical results of the multiple transformed versions.

This technique is not provably correct but provides a good

testing coverage. It also compliments techniques that are

provably correct, as these proofs do not extend to the imple-

mentation of the compilers, runtime systems, or hardware,

and in real systems, users must confront faults and errors in

these components as well.

3. Design and implementation

The program optimization process for multiple platforms is

a complex undertaking. It requires a detailed understanding

of the target platforms and the application being optimized.

Our system facilitates for experts the application of opti-

mizations and allows nonexperts to apply generic

sequences of optmizations to find faster code. It also makes

it easier for nonexperts to reuse results from others by

sharing optimization sequences or the database of variants.

The requirements for such system are maintain a clean

baseline version that executes on all target platforms;

coexistence with other tools and frameworks; reuse mod-

ules already developed; abstract the use of transformation

and search modules, so that it does not depend on any

specific module; provide total control to the developer;

and enable incremental use by providing localized opti-

mization of the baseline.

The system fulfills these requirements by having a sep-

arate language for optimization programming; clearly iden-

tifying on the optimization program the steps to be carried

out by the system; using source-to-source transformations

to compose complex transformation sequences to harness

the power of existing tools; having an interface able to

integrate multiple transformation and search modules and

abstract their use; and having a database of variants to reuse

search results without installing the whole toolset required

to generate those codes.

In the following sections, we describe our approach and

the Locus implementation that separates the optimizations

from the application code and creates a database of variants.

3.1. Locus system and language

Locus makes use of a powerful language for programming

the optimizations and for representing complex optimiza-

tion spaces. The software developer, through the Locus

program, has complete control over the optimization

sequences to be attempted to improve the performance.

The Locus language is dynamically typed and the sys-

tem includes a translator and optimizer for it. At system’s

run-time, the resulting high-level representation of the opti-

mization program is interpreted to generate variants of the

baseline source code. An example of an optimization pro-

gram is shown in Figure 1.

The programmer defines code regions in the source code

using C pragmas or Fortran comments. There are two types

of annotations: block and loop. The block annotation
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indicates the begin and end of the code region. The loop

annotation applies to loop nests. The loop annotations are

for loop transformations, and block annotations are for

alternative algorithm selection and optimizations compris-

ing multiple code regions.

The annotations include a label that can be referenced in

the optimization program. A CodeReg NAME statement in

the optimization program precedes the set of statements

that operate on the code regions in the source code labeled

NAME. An OptSeq NAME precedes a set of statements that

can be invoked within CodeRegs. An OptSeq can also be

invoked by other OptSeqs. The operations that transform or

get information from the source code can only be invoked

from CodeReg and OptSeq, because only they are able to

refer to the target code. The operations that extract infor-

mation from the source code, namely Query, are used to

decide which optimizatons to take next based on the current

state of the code.

Operations in Locus are implemented in modules that

are either external (e.g. RoseLocus) or intrinsic (e.g. Buil-

tin). External modules are part of other systems and intrin-

sic modules are those developed specially for Locus.

The Locus language has special constructs that are use-

ful to represent complex optimization spaces. The con-

structs are:

� OR blocks,

� OR statements,

� Optional statements, and

� datatypes for ranges of values (e.g. enum, integer,

float and poweroftwo).

The OR is used between sets of statements (blocks of

code) to describe alternative transformations. Any state-

ment with a preceding *is an optional statement that may

or may not execute. The search module will decide during

the search process which of the OR blocks and whether the

optional statements will execute.

There are two kinds of optimization programs: direct

and search. The direct Locus program contains a

sequence of transformations with no optional statements,

OR blocks, or ranges of values. The search Locus pro-

gram contains search constructs to explore an optimiza-

tion space. Many direct Locus programs can derive from a

search Locus program. The Locus interpreter that carries

out the transformation sequences only accepts as input

direct Locus programs.

Figure 2 depicts the database construction process and

its use. The database construction on the upper left-hand

side of the figure represents the search workflow that starts

with the conversion of the optimization space from the

search Locus program to the notation accepted by the

search module. After the conversion, the search process

may suggest variants to be evaluated first or let the search

module select these variants automatically. For each var-

iant, a direct Locus program is created by replacing all of

the search constructs with the specific values selected by

the search module. Once the direct Locus program is cre-

ated, the direct workflow (bottom-left horizontal transfor-

mation) uses it to generate a variant of the code (the

Optimized version in the figure) and finally evaluate it

according to some metric. The most common metric is

the execution time, but the assessment can be customized

to use any metric selected by the user (e.g. energy

consumption).

At the end of this iterative process, the sequence of

transformations used to generate the best variant is saved

Figure 1. Locus program for optimizing double-precision
matrix–matrix multiplication (DGEMM). This program applies
loop interchange, and a two- or three-level hierarchical tiling. It
also provides the values to be used as the initial configuration for
the search process.

Figure 2. On the left-hand side, the steps to add platform-specific
optimized variants to the database after the search process. A
direct Locus optimization program that loads the platform-
specific variants is also automatically created for future use.
During the deployment, shown on the right-hand side, the direct
program accesses the database, retrieves the best variants for
each code region, and replaces the ones in the baseline with the
variants from the database.
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as a direct Locus program. The search final output can be

shipped with the source code to be used in future deploy-

ments on the same platform. In this manner, the time spent

on the search process, which can be very long depending on

the size of the optimization space, is amortized among

multiple users. The search process can limit the number

of variants to be assessed or stop the search after a given

elapsed time or when a metric goal is reached.

Along with the direct Locus program, the best variant

code regions are saved in the database for later use. As

depicted on the right-hand side of Figure 2, the search

workflow final output (in direct Locus format) determines

which code regions will be replaced and the shape of its

replacement.

The variants assessed on the search workflow depend on

the heuristics of the search module used. Our experience

shows that the final result of the empirical process highly

depends on the initial variant assessed, which is, if not

provided, randomly selected. In other words, if the initial

configuration performs badly, the search usually takes

more time to get to a good solution.

The Locus syntax allows the specification of an initial

value for each search construct. These values may be used

as the initial configuration of the search process. The rules

used to define the initial configuration are as follows:

� optional statements are assumed to be executed;

� ranges of values have an extra parameter, namely

init), to provide the value;

� the first block of each OR block is used; and

� the first statement of each OR statement is used.

An example of annotated code is shown in Figure 3. The

loop nest in the code with label matmul represents a

matrix–matrix multiplication. This version is considered

the baseline.

The optimization program in Figure 1 has a definition

of a CodeReg with NAME matmul. This program first

changes the loop order according to the permutation on

the perm variable (e.g. from ijk to ikj) by calling

RoseLocus.Interchange. Then, the loop nest is tiled twice

by calling Pips.Tiling two times. In the end, there is an OR

block that has the possibility of tiling again and generating

a 3-level hierarchical tiling. Each tiling uses a range of

values to cover different shapes, the best shape depends on

the memory hierarchy, which is machine specific.

The code in Figure 1 also illustrates the representation of

initial values that may be given to the search module to be

assessed as the first variant. In this case, the initial values

are given for the perm variable and for the variables

tileI, tileK, tileK, tileI_2, tileK_2, and

tileJ_2. The first variant will include the first block of

the OR (only a None;) resulting in a two-level tiled variant.

In summary, Locus is invoked with the codes presented

in Figures 1 and 3 and applies the optimizations defined

in Figure 1 into the code of Figure 2. The result is

the generation of multiples variants that are assessed in the

target machine. One of these variants is shown in Figure 4.

The variant code shown is an example of how complicated

the variants generated can get. Locus is able to traverse the

optimization space, generating and evaluating many var-

iants automatically. Carrying out this process by hand is

cumbersome, error-prone, and unproductive. Locus is valu-

able on the optimization process by allowing developers to

concisely experiment with complex optimization spaces.

Besides, different search techniques can be used with no

changes to the optimization program.

3.2. Operation and search modules

The system is able to integrate different operation and

search modules. None of the modules, however, are

required and they are assumed by Locus to be independent

of each other. The availability of multiple and independent

Figure 3. Matrix–matrix multiplication (DGEMM) baseline ver-
sion in C language.

Figure 4. Code variant of the matrix–matrix multiplication gen-
erated by the optimization program in Figure 1. This code rep-
resents a two-level hierarchical tiling combined with loop
reordering.
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transformation modules provides a rich environment to

transform applications. The abstraction of the optimization

space provided by Locus allows the comparison of different

search modules to best traverse the potentially large opti-

mization space.

The operation modules include source-to-source trans-

formations, queries to extract information from the code

regions, methods to add pragmas (such as those used for

OpenMP), and a method to replace the original code. Exter-

nal tools can be invoked by implementing the operation

module interface. Operation modules can also be imple-

mented internally by manipulating the Locus representa-

tion of the code. The collections of operation modules

available are as follows:

� Pips: A source-to-source compilation framework for

transforming C and Fortran 77 programs (Keryell

et al., 1996). Locus has four loop transformations

available from Pips (GenericTiling, fusion, unroll-

and-jam, and unrolling).

� RoseLocus: An annotation-based source-to-source

loop transformations developed by us using the

Rose compiler infrastructure (Lidman et al.,

2012).

� Pragmas: Using this module is possible to add prag-

mas, which can be compiler specific or for paralle-

lization through OpenMP (Dagum and Menon,

1998). Examples of compiler-specific pragmas are

ivdep and vector always, which can be used to

enhance vectorization of the code generated by Intel

ICC compiler.

� BuiltIn: includes queries to get information about

loop nests, such as whether the nest is perfectly

nested (IsPerfectLoopNest), and to get the nest

depth (LoopNestDepth). It also includes a module

to replace the original code with code snippets. The

Altdesc is mostly used to incorporate hand-

optimized kernels into an optimization sequence.

The search modules available are as folows:

� OpenTuner: A framework for building domain-

specific program autotuners. It uses ensembles of

search techniques that run at the same time, testing

candidate configurations (Ansel et al., 2014). The

search variables are represented in a flat optimiza-

tion space. In this kind of representation, the search

techniques are not aware of variables that influence

the selection of other variables, which can worse the

traversal results by taking into consideration points

in the space that are not possible. Locus integration

checks whether the selections suggested are valid

before generating code and empirically evaluating

the variant.

� HyperOpt: A framework for optimizing complex

search spaces with real values, discrete, and condi-

tional dimensions (Bergstra et al., 2013).

3.3. Database of variants

A database of platform-specific codes for different code

regions that allows the use of pregenerated autotuned

code is an important requirement for making autotuning

more accessible. Despite the system’s goal to facilitate the

use of multiple transformation modules, in our experience

(and especially the experience of our computational scien-

tist users), the installation of the modules and their depen-

dencies has shown to be complex and often not available

for all systems.

As mentioned before, Locus allows the use of a direct

optimization program to reuse results from previous

empirical evaluations, which also makes the optimization

results accessible to non-experts. The users of a direct opti-

mization program, however, would still need to install all

the modules invoked in the direct program. The database

further facilitates the use of an direct optimization program,

because the best variant found for each code region is saved

along with a version of the direct Locus program resulted

from the search process.

The database organizes information about the optimiza-

tion process of an application. The process is commonly

comprised of multiple independent empirical evaluations.

The result of each evaluation is added to the database using

a unique identifier. We assume that the evaluations on the

same database are from the same baseline version and

assessed on the same platform.

The best variant found for each code region is saved in

the database. The code regions are indexed by the source

code file that they belong, their Locus label, and an index

value from 0 to the number of code regions in the source

file. The index value is used to set apart code regions in

case there are more than one in the same file with the same

label. Identical code regions that have the same label will

receive the same sequence of optimizations, but each one

may have a different best variant saved on the database.

Different codes can also have the same label and be

applied the same sequence of optimizations; this is possi-

ble by using Queries on the optimization program that

allows to customize the sequence of transformations

according to the code region.

Each variant in the database has attached its attained

metric (e.g. execution time). When a more recent empirical

evaluation is conducted and finds a different variant that

performs better, the current one in the database is replaced.

Figure 2 shows the database construction (left-hand

side) and database use (right-hand side). The empirical

evaluation results are added to the database after the

search process. It also generates (or updates if there is one

already) a direct Locus program that loads the variants

from the database.

Changes in the baseline version may result the variants

in the database incorrect. The database contains a hash of

the baseline code region that each variant was generated

from. The BuiltIn.Altdesc uses that hash to check whether

the current code, which the variant is being incorporated
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into, is the same as the one the variant was generated from.

The hash function may be language dependent; the current

implementation removes all the whitespace characters

before generating a SHA-1 key.

The empirical evaluation is often dependent on input

parameters (e.g. problem size and matrices shape). The

system allows the inclusion of tags that better represent the

context in which the variants were generated. These tags

can later be used to load the proper variants that will be

deployed for similar contexts. The tags are provided as key,

value pairs. For instance, the optimized code for matrix

multiplication heavily depends on the shape of the

matrices, which is one information that can be added as

tags. During deployment, in case the database does not

have an optimized code that matches exactly the key, value

requested, a heuristic can be used to get the most appropri-

ate from the available ones.

In our prototype implementation of the database, we use

the file system to separate out the variants of different

optimization processes. All the directories are automati-

cally created and managed. As mentioned before, the var-

iants are accessed from the database using a direct Locus

program, which is also automatically updated after each

empirical evaluation. The direct Locus program loads each

code region in place using the BuiltIn.Altdesc module with

the absolute path to where the variant is located as a para-

meter. Inside the database folder, there is one folder for

each source file. Inside each source file’s folder, there is

a file for each code region containing the code representing

the variant for it. The header of the file representing the

variant contains the hash to check whether the variant is

being applied into the same code region that it was gener-

ated from, and the metric attained by the variant. The name

of the variant’s file is the code region label, and its index

followed by tags in alphabetical order. Figure 5 presents an

example of the Locus database structure.

3.4. Distributed empirical search

In the same way that a database of pregenerated optimized

code is important for making autotuning more accessible,

the distributed empirical search allows the optimization of

applications in platforms that do not have available all the

code generation tools required. The transformation mod-

ules integrated into Locus are not available to all platforms.

For instance, RoseLocus is based on Rose, and at the time

of this publication, Rose was not available on IBM Power 9

Linux platforms.

One solution to assess platforms that lack the transfor-

mation modules required is to conduct the search process

and code generation from a machine that has the necessary

modules, move the generated code to the target platform,

compile it there, and evaluate and return the metric so the

search driver can decide which variant to evaluate next.

In search Locus programs, it is necessary to specify how

to build, compile, and run the variants generated. We added

to these commands the scp to copy the generated code, and

ssh to invoke the compilation and running steps on the

target platform. This strategy successfully allowed the eva-

luation of the IBM Power 9 Linux platform as presented in

the next section.

4. Evaluation

We evaluated the performance of the code generated by

Locus on two systems: IBM Power and Intel x86. The

details of the systems are presented in Table 2. The IBM

Power OS is a Linux Red Hat kernel version 4.14; the Intel

x86 OS is a Linux Ubuntu kernel 4.4.0. We show optimiza-

tion results on two benchmarks: a double-precision matrix–

matrix multiplication as presented in Figure 3 using the

optimization program shown in Figure 1 and a finite-

difference solution to the 3-D heat equation presented in

Figure 6 using the optimization program in Figure 7. The

search process was conducted by OpenTuner and limited

to the evaluation of 1000 variants or 5 h. The running

time of variants evaluated was capped by the elapsed time

of the best one found up to the moment the variant started

its execution. This significantly reduced the total search

time by limiting the execution of the bad variants that

could last for hours.

The code generated on the IBM Power was compiled

with XLC (version 16.1.1; flags -O3 and -qHot) compiler

and GNU GCC (version 8.2.0; flags -O3, -mtune¼native,

and -ftree-vectorize). For the Intel x86, the code was

compiled with ICC (version 17.0.1; flags -O3, -xHost,

-ipo, -ansi-alias, and -fp-model precise).

4.1. Matrix–matrix multiplication

The baseline code compiled with XLC performed signifi-

cantly better than when compiled with GCC for the IBM

Power platform. The XLC flag -qhot requests, according

to IBM manual, high-order transformations such as loop

Figure 5. Locus program for optimizing the finite-difference
solution to the 3-D heat equation. This program applies a tiling on
the J loop.
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interchange, fusion, unrolling, and reduce the use of tem-

porary arrays. Besides, by monitoring the compilation, we

could see that XLC uses interprocedural analysis. As a

consequence, the compilation time for XLC is at least three

times longer than with GCC.

Moreover, the compiler1 was able to detect that the base-

line version was a matrix–matrix multiplication and replace

it with a function call to a hand-optimized version. The

version containing the invocation to the hand-optimized

code is used as the reference on the performance evalua-

tion. The compiler, however, was unable to detect matrix

multiplication in the transformed code generated by Locus,

which, in turn, was able to find variants that were faster

than the XLC hand-optimized version.

Figure 8 shows results for IBM Power on the top and for

Intel x86 on the bottom. On both platforms, a two- and

three-level hierarchical tiling has been evaluated. The

results include the best variant found by Locus and the

baseline version using the two compilers. For the matrices

of 2048 by 2048 shape, the best variant generated by Locus

varied according to the compiler used. For XLC, the two-

level tiling was the fastest, whereas with GCC, the three-

level tiling attained the best performance. For matrices of

4096 by 4096 shape, both XLC and GCC found two-level

tiling faster. For XLC, three-level tiling also attained per-

formance close to that of the fastest two-level tiling ver-

sion. Locus, however, could not find a three-level tiling

variant, which when compiled with GCC was faster than

the baseline.

For 8192 by 8192 matrices, due to the long time taken by

most of the variants compiled with GCC, we only present

results using the XLC compiler. In this case, the best per-

formance is obtained with two-level tiling.

Search time is strictly dominated by the time to compile

and run the code variants. Compilation is often fast, except

for the case mentioned in which XLC runs high-order trans-

formations and interprocedural analysis. The variant exe-

cution, however, depends on the matrix size and can take

up to 30 min, since each variant was executed five times.

Table 2. Platforms used on the evaluation.

Platform Processor Clock Cores HT L1 L2 L3 RAM

IBM Power P9 8335-GTH 3.8 GHz 20 4 32 KB pr 512 KB sh 100 MB sh 570 GB
Intel x86 Xeon E5-2660 v3 2.60 GHz 10 2 32 KB pr 256 KB pr 25 MB sh 62 GB

Sh: shared; pr: private.
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The search time lasted up to 5 h for each of the experi-

ments. While earlier experiments, which only considered

two-level tiling, only took on average 1.5 h, the search time

has significantly increased after the addition of the third-

level tiling to the optimization space. The addition of an

third-level tiling within an OR block extended the search

process because the optimization space in a flattened rep-

resentation is not aware of the dimensions dependent on

other dimensions. In this case, the dimensions tileI_3,

tileK_3, and tileJ_3 only matter when the second

block within the OR block is selected; otherwise, their

values are ignored in the code generation and do not affect

the variant performance. However, the search module,

OpenTuner in this case, is not aware of that and may infer

that those values are important. In other words, the search

module processes an optimization space much bigger that

it actually needs to explore and wastes time exploring

configurations that do not improve performance.

In Table 3, we show the tiling shapes for the best variants

for each matrix shape on the two platforms. The tiling shapes

are very different from each other and result in input- and

platform-specific variants to be saved in the database.

4.2. Fixed versus random initial configuration

As mentioned above, a Locus program can set the initial

configuration of the search process. Figure 9 compares

two search strategies for matrix–matrix multiplication

on IBM Power. The first search strategy, which we call

fixed, starts with a configuration provided by the Locus

program. This configuration is the one identified as the

best for matrix–matrix multiplication on an Intel x86. The

second search strategy uses a random configuration

selected by the search module.

For the comparison, each of the two forms of search,

fixed and random, is run 10 times. For each run, we

record the best execution time of matrix–matrix multi-

plication as the search progresses. The plot shows the

best values obtained by each of the 10 runs at different

times of the search. The random search in some cases

produces slightly better execution times, but it can also

produce much slower values even for long searches. We

conclude that although the use of a initial configuration

based on results from another platform did not guarantee

finding the best variant, it confined the search outcome
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to a more certain and narrower range (all results are

below 28 s).

4.3. 3-D heat stencil

The 3-D heat baseline code is shown in Figure 6. The

optimization program in Figure 7 tiles the accesses to the

Y dimension of the XYZ input volume. It first stripmines

the j loop (responsible for traversing the Y dimension) by

calling RoseLocus.StripMine. Then, RoseLocus.Interch-

ange is used to change the order of the loops by moving

the created loop to the outermost position. This tiling

increases the reuse of the elements of the XY plane as it

traverses the Z dimension and improves performance when

the XY plane does not fit on last private level cache. The

tiling appears most effective when the problem is large

enough that 4 XY (three for the input and one for the output)

planes do not fit into cache.

Figures 10 and 11 present weak scaling and strong scal-

ing performance results comparing the baseline version

and the best tiled variant generated using Locus. The

results were evaluated using 1, 10 (1 for each core), and

20 processes (2 for each core; HyperThreading is

available on the processor) on Intel x86; and 1, 20, 40,

and 80 processes on IBM Power. The variants and the

baseline were compiled with ICC on Intel x86 and XLC

on IBM Power. For the concurrent processes evaluation,

GNU parallel command (Tange, 2011) was used to

execute in parallel the same binary.

4.3.1. Weak scaling. The stencil was executed on a 2563

mesh of double-precision elements. On the Intel x86 with

only one process on the socket, the tiled code does not show

any improvement in the aggregated number of millions of

stencils performed per second. However, as the access to

the cache and memory becomes more competitive with the

increasing number of processes, the tiled code performs

better. The aggregated performance of the tiled code is

approximately 20% higher compared to the baseline when

running 10 processes (1 per core). The aggregated perfor-

mance of the tiled code when using 20 process is slightly

worse than with 10 process, which demonstrates the satura-

tion of memory subsystem. It is, however, 50% higher than

the baseline performance. Similar conclusions can be

drawn from the experiments on the IBM Power.

Table 3. Tiling shapes of the best variant for the matrix–matrix multiplication generated by Locus.a

Platform Matrices Shape Compiler tile I tile K tile J tile I2 tile K2 tile J2

IBM Power 2048 XLC 256 128 2048 256 16 8
4096 XLC 512 512 512 4 512 256
8192 XLC 8192 4096 8192 8192 64 16

Intel x86 2048 ICC 512 1024 32 512 64 32
4096 ICC 512 128 2048 256 32 32

aTwo-level tiling was faster than three-level tiling for all results.
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Despite the processes being independent of each other,

the aggregated performance of the system does not follow

a linear increase as the number of processes increases.

The memory bandwidth is a bottleneck in which optimi-

zations such as tiling can help mitigate its limitations.

This contrasts with the observations in Datta et al.

(2009), for example, though those were for systems

nearly a decade ago, and (with the exception of results

on the Cell processors), only one core was used in their

work (see Table 2.1 of Datta et al., 2009). However,

similar to the findings in that paper and our own more

recent work with the XPACC application program, it

remains important to make the inner loop use stride-one

indexing and be as long as possible, so as to exploit both

vectorization and memory optimizations such as prefetch.

The tile values for the best variants decreased as the

number of processes increased. On Intel x86, for 10 pro-

cesses the best found tiling value was 64, and for 20 pro-

cesses was 16. On IBM Power, for 20 processes the best

found tiling value was 64, for 40 was 32, and for 80 was 16.

As the caches are shared among more processes, the tile

values have to be smaller to accommodate the increasing

amount of data.

The optimal variant differed as the concurrency in the

processor increased; this information can be added to the

database as a tag to the variants. And, in the same way as

for the matrix–matrix multiplication, the optimal code is

dependent on the problem size.

4.3.2. Strong scaling. Figure 11 presents the results for a

mesh of 16003 double-precision elements. Through tiling

Locus was able to generate faster stencil code, similar to

the results from the weak scaling experiments.

The best tiling values found on Intel x86 were 1024 for 1

process, 512 for 10 processes, and 256 for 20 processes. On

IBM Power the best tiling values were 32 for 1 process, 16

for 20 processes, 8 for 40 processes, and 4 for 80 processes.

Once again, as the number of processes increased, the tile

size decreased. The best tiling values found on IBM Power

were significantly smaller than the ones found on Intel x86.

The gaps between the baseline and best variant were also

bigger on IBM Power.

5. Conclusions and future work

In this article, we describe the requirements that we

believe are necessary for making automatic performance

tuning widely adopted. We present the design and imple-

mentation of a system that fulfill these requirements. It

Figure 11. Strong scaling results for the 3-D Heat stencil (16003

mesh size) on Intel x86 and IBM Power 9. Only the Z dimension of
the XYZ input volume is split among the processors. It shows the
execution of 1, 10, and 20 processes running concurrently for
Intel x86; 1, 20, 40, and 80 running concurrently on IBM Power 9.
Tiling appears most effective as the number of processes
increases.

Figure 10. Weak scaling results for the 3-D Heat stencil (2563

mesh size) on Intel x86 and IBM Power 9. It shows the execution
of 1, 10, and 20 processes running concurrently for Intel x86; 1,
20, 40, and 80 running concurrently on IBM Power 9. Tiling
appears most effective as the number of processes increases.
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includes a domain-specific language that is able to rep-

resent complex collections of transformations, an inter-

face to integrate external modules, and a database to

manage platform-specific efficient code. The database

allows the system users to access optimized code without

having to install the code generation toolset. After all,

the system presents an approach for performance

portability.

We showed two examples that used the system to gen-

erate optimized code for two different platforms. Locus

was able to generate matrix–matrix multiplication code that

outperformed the IBM XLC internal hand-optimized ver-

sion by 2X on the Power 9 processors. On Intel x86, Locus

was able to generate code with performance comparable to

Intel MKL’s, which is also hand-optimized and platform-

specific. The 3-D heat stencil optimized by Locus was up to

75% more efficient in the aggregated performance com-

pared to the baseline version.

We also showed the benefits of using a fixed configura-

tion based on results from a different platform as the search

starting point, which confined the search outcome to a

narrower range.

The performance attained varied significantly according

to the platform and the input dimensions and shows the

value of having a database that saves efficient platform-

specific code for each code region.

One important goal of the system has been the optimiza-

tion of the large, complex multi-physics application being

developed at the XPACC, 2018. At XPACC, the initial

step, and not less challenging, was to define the baseline

version out of a code that had already evolved into an

optimized version. Subsequently, all the hand-optimized

code regions were included in the Locus system as a pre-

ferred version. These preferred versions are loaded into the

application at build time. We are currently working on

using the code transformations available on the system to

automatically generate and autotune these preferred

versions.

As future work, we plan to evaluate other platforms

and the system on more complex applications. We also

plan to evaluate other search modules to speedup the

search process.
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