
A Scalable Parallel Deduplication Algorithm

Walter Santos∗ Thiago Teixeira∗ Carla Machado† Wagner Meira Jr.∗

Altigran S. Da Silva‡ Renato Ferreira∗ Dorgival Guedes∗

∗Department of Computer Science
†Department of Demography

Universidade Federal de Minas Gerais,
Brazil

‡Department of Computer Science
Universidade Federal do Amazonas, Brazil

Abstract

The identification of replicas in a database is fundamen-
tal to improve the quality of the information. Deduplication
is the task of identifying replicas in a database that refer to
the same real world entity. This process is not always triv-
ial, because data may be corrupted during their gathering,
storing or even manipulation. Problems such as misspelled
names, data truncation, data input in a wrong format, lack
of conventions (like how to abbreviate a name), missing
data or even fraud may lead to the insertion of replicas in a
database.

The deduplication process may be very hard, if not im-
possible, to be performed manually, since actual databases
may have hundreds of millions of records. In this paper, we
present our parallel deduplication algorithm, called FER-
APARDA. By using probabilistic record linkage, we were
able to successfully detect replicas in synthetic datasets with
more than 1 million records in about 7 minutes using a 20-
computer cluster, achieving an almost linear speedup. We
believe that our results do not have similar in the literature
when it comes to the size of the data set and the processing
time.

1 Introduction

Reliable and consistent databases are key for tasks such
as decision support, trend analysis, fraud detection, and
business intelligence. However, actual databases present
problems such as missing, invalid, or even duplicate data.
In this paper we tackle this last problem, that is, how to
detect duplicate entries in databases. Application scenar-
ios include eliminating replicas in digital libraries, health
records, customers and financial databases, among others.
In all cases, we may want to find all occurences of a given
entity, despite the noisy data and the absence of an effective

identifier. This problem is known as Entity Resolution (ER)
and the process of eliminating replicas is called deduplica-
tion. As we discuss, this problem becomes harder as we
increase the size of the databases or the number of sources
(usually heterogeneous) used to create the database [12].

There are several strategies for performing the dedupli-
cation of a database. A simple approach is the determin-
istic (exact) linkage, where we assume that a set of record
attributes may be used as an identifier. In practice, a set
of rules is used to identify replicas [5]. Although usu-
ally efficient and possible to implement in database man-
agement systems, this strategy does not deal well with a
variable amount of noise, what is usually the case in ac-
tual databases. One strategy that addresses this last issue
is the probabilistic linkage [7], which is based on attribute-
based probabilities of true and false matches to determine
the probability that two records refer to the same entity [6].
We may divide this strategy into three major tasks. The first
task is to determine which records must be compared in or-
der to determine whether they are duplicate or not. The sec-
ond task is to perform the comparison in a per-attribute ba-
sis, which should take into consideration their different type
(e.g., number or string) and other characteristics. The third
task is to check the per-attribute comparison results and de-
cide whether there is a duplicate. It is important to note that
the worst case scenario of the problem has a quadratic cost,
when we compare all pairs of records in the database.

Some challenges must be addressed to achieve scalabil-
ity while performing probabilistic linkage. The first one
is the computational cost, associated with both the deter-
mination of the pairs and their comparison. The second
challenge is the often large storage demand associated with
these large databases, which do not fit in a single machine.
The third challenge is that the application is completely
irregular, so that the amount of computation and storage
varies with the nature of the input. In this paper we present
a scalable parallelization of the probabilistic linkage algo-

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.32

79

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.32

79

rithm, which addresses all three challenges. The computa-
tional and storage-related challenge is addressed by a trans-
parent partition of the data and the tasks to be performed.
The third challenge is addressed by maximizing the overlap
between computation and communication, as well as em-
ploying replication and message coalescing techniques.

To our best knowledge, only three solutions, Febrl [13], a
family of algorithms (p-DC, p-DD1 and P-DD2) [10] and P-
Swoosh [11] have common objectives with this work. But
none of these solutions provide better scalability and effi-
ciency than FERAPARDA, in terms of number of records
and comparison rate.

2 Problem Formulation

Consider a dataset R = {r1, r2, r3, . . . , rn} formed by
records with attributes A = {R.A1, R.A2, . . . , R.Am}. Let
ε = {e1, e2, . . . , ej} be the set formed by the distinct real
world entities from dataset R. Consider also a function
E(ri) that maps a record ri ∈ R to an entity ej ∈ ε. We say
that a record a is a replica of a record b if E(ra) = E(rb). In
general, the mapping E(ri) is only provided by the dataset
when there is a reliable record identifier formed by a sub-
set of A. In these cases, a simple join operation is enough
to eliminate replicas. In many cases, however, there is
no unique identifier or, further, the size of ε is not even
known [2]. In these cases, it is necessary to develop more
elaborate techniques. The deduplication process tries to
identify the ε set with as few misses as possible.

2.1. The Deduplication Process

Real world data is generally dirty: it contains incom-
plete, misspelled and noisy information [9]. When dedupli-
cating a dataset, the first step is to clean and to standardize
it. The cleaning and standardization task converts raw input
data into a consistent and well formed form. Although such
tasks are part of the deduplication process, we will leave
them as future work. The deduplication process is shown in
Figure 1.

Figure 1. The deduplication process

The next task is known as blocking. The objective of this
task is to limit the number of comparisons. O(n2) compar-

isons are necessary in the general case, but, in practice, most
of them can be eliminated. Many works [1, 3] discuss differ-
ent blocking strategies. In this work, we consider only the
standard or classic blocking, which defines a blocking pred-
icate of a disjunction of conjunctions. Each part of a con-
junction defines a transformation function over one or more
attributes of the record. An example of predicate is P =
(first name∧year of birth)∪ (last name∧ country).
When applied to a record, the blocking predicate will gen-
erate a blocking key for each conjunction. Comparisons are
only executed for items with the same blocking key.

There is a trade off in using this blocking mechanism. A
strict blocking predicate that generates several small blocks
can leave a pair (ra, rb) out of the comparison process be-
cause the records did not generate any matching blocking
key. On the other hand, generating few large blocks, the
number of record comparisons grows quadratically, imply-
ing similar grow in execution time.

The pair comparison stage takes the pairs generated by
the cartesian product within each block and compares the
records attributes. There are, again, several alternatives in
the literature on how to perform the record comparison,
which can be based on the attributes [7], on string and en-
coding functions, and, recently, using TF-IDF schemes [4].
The comparison functions can be simple, as exact string or
number comparison or take into account several typograph-
ical errors. Each comparison function returns a numerical
value, that can be normalized between zero and one, where
zero indicates disagreement, and a value greater than a min-
imum is considered agreement (to tolerate small errors).

The last stage, classification, involves using some simi-
larity function which summarizes the results of the pairwise
comparison and classifies the pairs in matches, non-matches
and possible matches. The similarity function is probabilis-
tic and decides if a pair is a match if the result of the similar-
ity function is greater than or equal to an upper limit Tupper.
The pair is not a match if the result is less than a lower limit
Tlower. If the result of the similarity function is between the
two limits, the pair is considered a possible match.

2.2 The Sequential Algorithm

The sequential algorithm is straight forward and its
pseudo-code is shown in Algorithm 1. Each record is read
from the database, and, for each conjunction in blocking
predicate, it generates a blocking key (lines 6-7). If there
is no existing block associated to the blocking key, a new
block is created (lines 9-11) and a reference to the record is
stored in it. Otherwise, the block associated with the gen-
erated key is retrieved, the record is compared to all the
records already stored in the block, and a reference to the
current record is appended to the block.

Only records having the same blocking key for the same

8080

Figure 2. Pair generation

conjunction will be compared. Figure 2 illustrates the
blocking stage. In the example, the blocking predicate, de-
fined as the concatenation of the record year and city, gener-
ates a key with value 1977NY. The identifiers of the records
already processed are listed within the block (1, 43, 53, . . .
and 87). When record 323 is read from the input, a blocking
key with value 1977NY is generated and the block for the
key is retrieved from the hash table. The algorithm then cre-
ates pairs with record 323 and all the records stored within
the block and executes the comparison and the classification
(lines 13-16). That record, whose identifier is 323, is then
appended into the block (line 17).

Deduplicate (Dataset, Configuration):1

HashTable← ∅2

foreach Record ∈ Dataset do3

foreach Conjunction ∈ Predicate do4

Key ← ∅5

foreach Transformation ∈ Conjunction do6

Key ← concatenate(Key,7

transform(Record))

/*Creating a new block*/8

if Block ← get(HashTable, Key) == NULL then9

Block ← createBlock()10

put(HashTable, Key, Block)11

/*Comparing*/12

foreach OldRec ∈ Block do13

Pair ← (Record, OldRec)14

Result← compare(Configuration, Pair)15

isPair ← classify(Result)16

Block.Append(Record)17

Algorithm 1: Sequential deduplication algorithm

3 The Parallel Algorithm

In this section we present our parallel version of the
deduplication algorithm. We start by presenting the Anthill
environment, which is used as a basis for the parallelization
implemented. After, our proposed algorithm is discussed.
We discuss the parallelization dimensions exploited and ad-
vantages, as well as implemented optimizations.

Reader (Dataset, Configuration, Rank, Instances):1

sequence← 02

foreach Records ∈ Dataset do3

Key ← ∅4

Record.id← sequence ∗ Instances + rank5

foreach Conjunction ∈ Predicate do6

foreach Transformation ∈ Conjunction do7

Key ← concatenate(Key,8

transform(Record))

sendToblocker(Record.id, Key, Conjunction)9

sequence← sequence + 110

Algorithm 2: Reader filter algorithm

Blocking ():1

HashTable← ∅2

foreach Message from Reader do3

Key←Message.key4

Conjunction←Message.conjunction5

if Block← get(HashTable, Key, Conjunction) ==6

NULL then
Block← createBlock()7

put(HashTable, Key, Conjunction, Message.id)8

foreach OldRec ∈ Block do9

Pair← sort(OldRec, Message.id)10

sendTomerger(Pair)

Algorithm 3: Blocking filter algorithm

3.1 Anthill

Building applications that may efficiently exploit paral-
lelism while maintaining good performance is a challenge.
In this scenario, given their size, datasets are usually dis-
tributed across several machines in the system to improve
access bandwidth. as Success in this approach depends on
the application being divided into portions that may be in-
stantiated on different nodes of the system for execution.
Each of these portions performs part of the transformation
on the data starting from the input dataset and proceeding
until the resulting dataset is produced, in what is called the
filter-stream model.

In the filter-stream model, filters are the representation of
each stage of the computation, where data is transformed,
and streams are abstractions for communication which al-
low fixed-size untyped data buffers to be transferred from
one filter to the next. Creating an application is a process
referred to as filter decomposition. In this process, the ap-
plication is modeled as a dataflow computation and then
broken into a network of filters, creating task parallelism
as in a pipeline. At execution time, multiple (transparent)
copies of each of the filters that compose the application
are instantiated on several machines of the system and the
streams are connected from sources to destinations.

8181

Merger ():1

HashTable← ∅2

foreach Message from Blocker do3

Pair ←Message.pair4

Key ← f (Pair)5

if get(HashTable, Key) == NULL then6

sendTocomparator(Message.pair)7

put(HashTable, Key)8

Algorithm 4: Merger filter algorithm

Our run-time system, Anthill [8], tries to exploit the
maximum parallelism in applications structured in the filter-
stream model by exploiting three potential sources of paral-
lelism: task parallelism, data parallelism, and asynchrony.
By dividing the computation into multiple pipeline stages
(task parallelism), each one replicated multiple times (to
handle data in parallel), we can have a very fine-grained
parallelism and, since all this is happening asynchronously,
the execution is mostly bottleneck free. In order to reduce
latency, the grain of the parallelism should be defined by the
application designer at run-time.

In our experience, we observed that when we decom-
posed our data intensive applications into filters, the natural
solution was often a cyclic graph, where the execution con-
sisted of multiple iterations over the filters. An application
would start with data representing an initial set of possible
solutions and as those passed down the filters new candidate
solutions would be created. Those, in turn, would have to
be passed through the network to be processed themselves.
Also, we noticed that this behavior led to asynchronous ex-
ecutions, in the sense that several solutions (possibly from
different iterations) might be tested simultaneously at run-
time.

One important characteristic distinguishes the Anthill
environment from its predecessors: given the cyclic nature
of the computation, there are often dependencies among dif-
ferent data that flow through the cycle. Since each stage of
computation may have multiple replicas, we must have a
way to state that the result of a computation in a given cy-
cle be fed back to a specific instance of another stage. That
may be necessary because, for example, there may be some
state associated with all inter-dependent pieces of data and
that can reside in only one filter instance, so all dependent
data must be routed through that specific instance. The ab-
straction for that in the Anthill is called a labeled stream.
It is created by allowing the programmer to associate a la-
bel with each message and a mapping function (hash) that
associates each possible label with a specific filter instance.

This mechanism gives the application total control over
the routing of its messages. Because the hash function is
called at runtime, the actual routing decision is taken indi-
vidually for each message and can change dynamically as

Comparator (DatasetPartition):1

SentCache← ∅2

RecCache← ∅3

foreach Message received do4

id1←Message.pair.id15

id2←Message.pair.id26

/*It Always has this record*/7

Record1← get(DatasetPartition, id1)8

if Message.type = Compare then9

/*Instance has both records?*/10

if id2 ∈ DatasetPartition then11

Record2← get(DatasetPartition, id2)12

R← compare(Record1, Record2)13

sendToclassifier(R)14

else if id2 ∈ RecCache then15

R← compare(id1, id2)16

sendToclassifier(R)17

else if id2 ∈ SentCache then18

sendToprocess(owner(id2), id1, id2)19

else20

sendRecord(owner(id2), record(id1), id2)21

put(SentCache, id1, owner(id2))22

else if Message.type = CRRmsg then23

Record2← get(RecCache, id2)24

R← compare(Record1, Record2)25

sendToclassifier(R)26

else if Message.type = RCRmsg then27

Record2←Message.Record28

R← compare(Record1, Record2)29

sendToclassifier(R)30

put(RecCache, id2)31

Algorithm 5: Comparator filter algorithm

the execution progresses. This feature conveniently allows
dynamic reconfiguration, which is particularly useful to bal-
ance the load on dynamic and irregular applications. The
hash function may also be slightly relaxed, in the sense that
its output does not have to be one single instance. Instead,
it can output a list of those. In that case, a message may
be replicated (multicast) or even broadcast. This is particu-
larly useful for applications in which one single input data
element influences several output data elements.

3.2 Parallelization Strategy

In this section we describe our parallel implementation
of the deduplication algorithm. The parallelization is based
on four filters: ReaderComparator, Blocking, Classifier, and
Merger.

The ReaderComparator filter (Algorithms 2 and 5) is
responsible for reading each record of the dataset, assign-
ing an identifier to the record and generating a blocking

8282

Classifier ():1

foreach Message from Comparator do2

C ←Message.c3

C′ ← f(C)4

if C′ > upperthreshold then5

Pair is a match.6

else if C′ < lowerthreshold then7

Pair is not a match.8

else9

Can not say anything.10

Algorithm 6: Classifier filter algorithm

key for each conjunction in the blocking predicate. The
record identifier is generated in a such way that it is pos-
sible to identify which filter instance read it (by using id =
totalOfInstances ∗ sequence+ rank), what is necessary
for later stages of the algorithm.

Once a blocking key is generated, it is sent together with
the record identifier and the conjunction identifier to the
Blocking filter (Algorithm 2, line 9). This communication
employs a labeled stream based on the blocking key, so that
every message with the same blocking key will be sent to
the proper instance of the Blocking filter. The Blocking fil-
ter (Algorithm 3) keeps a list of record identifiers for all
records that generate the same blocking key. When a new
message arrives, the Blocking filter identifies whether it has
to create a new block or simply append to an existing one.
Further, during message reception, the Blocking filter gen-
erates a pair of record identifiers formed by the identifier
from the message and each identifier present in the list, as
can be seen in Figure 2.

Predicate conjunctions may overlap and generate redun-
dant pairs, which would result in redundant processing. To
avoid this, we employ a Merger filter (Algorithm 4), which
eliminates redundant pairs. To identify redundant pairs, the
Merger filter keeps a hashtable defined by the combination
of the identifiers, where the smaller one is always used first.
An interesting optimization in this filter arises from the fact
that the record identifier generation is always growing, thus,
after a while, no pair will be associated with that identifier
anymore. In early experiments, when we were keeping all
pairs in this filter, memory utilization was high. Now, we
defined a circular list that keeps the hash keys and limits
the hashtable size, while it guarantees access to all relevant
keys.

All pairs that have never been processed are sent back
to the ReaderComparator filter. The Merger filter uses
labeled streams based on the larger record identifier. We
should recall that, through an identifier, it is possible to
know which ReaderComparator instance generated it. We
always use the larger identifier because we assume that the
ReaderComparator filter that generated it will be able to

Figure 3. Filter pipeline

compare the pair. Note that the Merger filter will always
send a pair to a ReaderComparator instance that has at least
one of the records.

Figure 3 shows this loop. We decided to implement
Reader and Comparator as the same filter because during
the comparison stage it already has all needed records in its
memory. It is important to say that, in this work, we are as-
suming that the database partition is stored in memory, and
future work will address the cases where such premise is
not valid.

It is important to notice that we could not find an effi-
cient strategy that produces a perfect partition of an arbi-
trary ordered dataset that guarantees a balanced load among
ReaderComparator filters. Thus, a pair of records to be
compared may be in any of the instances and we do not
know in advance whether it is possible to exploit any lo-
cality of reference. When a ReaderComparator receives a
message of type Compare from the Merger filter, it checks
whether it has both records in its dataset partition. If this
is the case, it compares them and send a message with the
comparison result to the Classifier filter (lines 11-14, Al-
gorithm 5). When a ReaderComparator instance has only
one of the records, it has to send its record to the instance
that owns the other one, which, of course, involves commu-
nication. Having this in mind, we made several optimiza-
tions to reduce communication. We defined two new types
of messages: ReceiveAndCompareRecord (RCRmsg) and
CompareAlreadyReceivedRecord (CRRmsg). ReceiveAnd-
CompareRecord message carries the entire record and does
not reduce costs by itself (lines 20-22). However, after a
record has been sent to another ReaderComparator instance,
it will be never sent again to that instance. Whenever a new
pair arrives at a ReaderComparator instance and it does not
have both records, it checks whether it has already sent its
record to the other instance. If this is the case, it sends just
a CompareAlreadyReceivedRecord message (lines 18-19).
Finally, there is another optimization: if a ReaderCompara-
tor instance receives a pair, it holds just one of the records,
and the other record is in its receive cache, no communica-
tion is needed and the result of the comparison is sent to the
classifier (lines 15-17).

8383

The last filter is the Classifier (Algorithm 6). It will clas-
sify the pair of records according to the result of the Read-
erComparator filter and says whether the pair is a match, is
not a match, or is a possible match (needs human supervi-
sion).

3.3 Discussion

Our parallel implementation of the deduplication algo-
rithm exploit the task parallelism, data parallelism, and
asynchrony, through its run-time system, Anthill.

Task parallelism is implemented through the pipeline.
The pipeline is controlled by the data dependencies. The
ReaderComparator does not need to read the entire database
before sending a record to Blocking filter. In this case, as
soon as a record is read, it is put in the pipeline for process-
ing. As a result, multiple tasks may be performed simulta-
neously.

By using multiple instances of a given filter that pro-
cesses a partition of the dataset, we are taking advantage
of the data parallelism. The ReaderComparator filter is
the best candidate to have multiple instances. Once it
has both records, the processing does not depend on other
data. Other good candidate to have multiple instances is the
Blocking filter. The Blocking filter iterates over a list of
record identifiers that had the same blocking key in O(n),
where n is the size of the list. When using a larger number
of instances of ReaderComparator, the number of messages
arriving to the Blocking filter may overload it.

There are two asynchrony opportunities exploited by the
algorithm. The first one is when a comparison pair is sent
to the ReaderComparator as soon as the MergerFilter learns
about it. In this case, if the same pair comes later from a
different block, it is not sent again. The second opportunity
is when more than one instance of the same filter may run
on the same processor, in order to exploit the asynchrony.
While one instance is sending data through the network,
other instance may be using the CPU. In our experiments,
we could observe that using multiprogramming for the fil-
ters helped in optimize specially the CPU use.

4 Experimental Results

In this section we present an experimental evaluation
of our parallel deduplication algorithm using synthetic
datasets. The experiments were executed in a cluster of
AMD Athlon 64 3200+ processors with 2GB RAM mem-
ory, connected by Gigabit Ethernet, and running Linux 2.6.

Given the difficulty of getting large and real datasets, we
ran tests using a synthetic database generated by Febrl data
generator (DsGen). It is, therefor, possible to reproduce the
same characteristics in the data as can be encountered in
the real world. DsGen creates datasets with records that

contain randomly created names and addresses (using fre-
quency files), dates, phone numbers, and identifier numbers.
Duplicate records will then be created following a given
probability distribution, with different single errors being
introduced [13].

In order to evaluate the scalability, we defined a predicate
P that would generate a large number of pairs:

P = (phone number ∧ first name)∪
(phone number ∧ year month birthdate)∪
(dmetaphone(last name, 4) ∧ year birthday)∪
(dmetaphone(first name, 4) ∧ birthdate)∪
(zip code ∧ birthdate)∪
(truncate(first name, 3) ∧ zip code)∪
(nysiis(locality, 4) ∧ month birthdate).
In our first experiment we want to measure the scalabil-

ity of our implementation. Figure 4 shows the results of our
experiments varying the number of records in each dataset
and the number of instances of ReaderComparator filter,
considering one instance per processor. The executions var-
ied from 1 to 15 instances and we used dataset containing 1
million, 500k, and 250k records.

After using gprof profiler to evaluate our sequential
implementation, we noticed that about 90% of execution
time was spent in the comparisons. For this reason, we
based the speedup experiment only on the number of in-
stances of ReaderComparator filter.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
pe

ed
up

Number of Instances of ReaderComparator Filter

SpeedUp

1 million records
500,000 records
250,000 records

Linear

Figure 4. Feraparda Speedup

Analyzing the speedup graph, we can see that the scala-
bility of the algorithm is almost the same for all the dataset
sizes, achieving an efficiency of above 80% up to 15 pro-
cessors. A significant part of this result is due to Anthill
capabilities described in Subsection 3.3.

On the other hand, as the number of instances increases,
the speedup tends to decrease, and we believe that the com-
munication costs are the main cause. When using a large
number of processors there is a significant communication

8484

cost and a low computational demand, reducing the effi-
ciency of the algorithm. This increase in communication
was expected because the more nodes are used, the smaller
are the odds of having both records to be compared on the
same node.

Figure 5 shows this increase in number of messages ex-
changed when the number of instances of ReaderCompara-
tor filter increases. We use the 1 million record dataset for
this experiment. Analyzing the graph, we see that the total
number of messages exchanged in the 15-instance execu-
tion is almost twice the number of messages exchanged in
the 1 instance execution. The graph shows that a total of al-
most 2.2 million messages were exchanged independently
of the configuration. For 15 instances were additionally ex-
changed more than 1.5 million messages only between the
instances of ReaderComparator filter.

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
ot

al
 N

um
be

r
of

 M
es

sa
ge

s
(x

 1
00

0)

Number of Instances of ReaderComparator Filter

Number of Messages Exchanged

Figure 5. Messages exchanged in Feraparda

The use of a cache, as we proposed, significantly reduces
the communication between instances of ReaderCompara-
tor filter. We only send records to instance once, and the
next time we only send the meta-data of this record to re-
duce communication. Besides, we group meta-data from
various records before sending, in an effort to further re-
duce communication overhead.

Figure 6 shows the absolute number of comparisons per
second and the percentage of comparisons performed using
each kind of message. In this experiment we used 3 in-
stances of ReaderComparator filter. We see that more than
60% of comparisons, or more than 30,000 comparisons per
second, were performed using messages with the aforemen-
tioned meta-data (CompareAlreadyReceivedRecord mes-
sage type). Also, approximately 40% of the comparisons,
or almost 15,000 comparisons per second, were performed
using records in local datasets. It also shows that the algo-
rithm has an initial warm-up during which there is a high
ratio of records exchanged, but after some time it drops to
almost 0. In certain way, label streams provide locality of

reference because once a record is send it will not be sent
again.

Figure 6. Comparisons performed by Reader-
Comparator filter with 3 instances

To evaluate the effectiveness of our cache, we collected
statistics of its utilization. These statistics are presented in
Table 1. We see that the number of comparisons performed
using cache increases with the number of ReaderCompara-
tor instances. The more instances there are, the smaller is
the local partition, the more communication is needed to
perform comparisons, and the more cache is then used. We
also notice that the number of comparisons varied for each
configuration. This occurred because the merger filter has
a cache with limited size of 10,000 and two identical pairs
could be compared twice because when the second arrive,
the first one may have already left the cache. A study about
optimizing the cache is left as future work.

Another reason for achieving the observed speedup was
the load balance between ReaderComparator instances. The
number of comparisons done by each instance should be
the same to achieve a perfect load balance. The graph from
Figure 7 shows the percentage of the total comparisons per-
formed by the worst instance (performed smaller number of
comparisons), best instance (performed the larger number
of comparisons), and the average between all instances. The

8585

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

151296321

%
 o

f C
om

pa
ris

on
s

E
xe

cu
te

d

Number of Instances of ReaderComparator Filter

Load Balancing for ReaderComparator Intances

worst instance
average

best instance

Figure 7. Load balance analysis

Inst. Total of Comparisons Using Cache %
1 270633791 0 0
2 270633788 134454100 49.68
3 270725451 178538727 65.95
6 271163034 221754408 81.78
9 271382940 235108278 86.63
12 271430184 240764988 88.70
15 271585380 243796260 89.77

Table 1. Statistics of comparisons in Reader-
Comparator filter (1 mi)

difference between the worst and best instances becomes in-
significantly when the number of instances of ReaderCom-
parator grows, presenting a very good load balancing.

5 Conclusions and Future Work

In this work we proposed and evaluated a parallel and
scalable algorithm for the deduplication problem. The al-
gorithm is implemented using the Anthill programming
environment and exploits both task and data parallelism,
multi-programming and message coalescing techniques to
achieve scalability. The experiments show impressive num-
bers when compared to other solutions, achieving an almost
linear speedup. As future work directions, we plan to eval-
uate other blocking techniques, their benefits and their par-
allelization. A more detailed study about the data distribu-
tion, use of caches and database replication is also planned.
Finally, we will apply our solution to a real health record
database (in progress) and evaluate the results.

References

[1] R. Baxter, P. Christen, and T. Churches. A comparison of
fast blocking methods for record linkage. In Proceedings

of 9th ACM SIGKDD Workshop on Data Cleaning, Record
Linkage and Object Consolidation, 2003.

[2] I. Bhattacharya, L. Licamele, and L. Getoor. Relational clus-
tering for entity resolution queries. In ICML 2006 Work-
shop on Statistical Relational Learning (SRL), Pittsburgh,
PA, USA, 2006.

[3] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive block-
ing: Learning to scale up record linkage. In ICDM ’06:
Proceedings of the Sixth International Conference on Data
Mining, pages 87–96, Washington, DC, USA, 2006. IEEE
Computer Society.

[4] M. Bilenko and R. J. Mooney. Adaptive duplicate detec-
tion using learnable string similarity measures. In KDD ’03:
Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 39–
48, New York, NY, USA, 2003. ACM Press.

[5] P. Christen and K. Goiser. Quality and Complexity Measures
for Data Linkage and Deduplication, volume 43. Springer
Berlin / Heidelberg, Secaucus, NJ, USA, 2007.

[6] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios. Tai-
lor: A record linkage tool box. In ICDE ’02: Proceedings
of the 18th International Conference on Data Engineering,
pages 17–28, Washington, DC, USA, 2002. IEEE Computer
Society.

[7] I. P. Fellegi and A. B. A theory for record linkage. Jour-
nal of the American Statistical Association, 64(328):1183–
1210, 1969.

[8] R. A. Ferreira, J. Wagner Meira, D. Guedes, L. M. A. Drum-
mond, B. Coutinho, G. Teodoro, T. Tavares, R. Araujo, and
G. T. Ferreira. Anthill: A scalable run-time environment for
data mining applications. In SBAC-PAD ’05: Proceedings of
the 17th International Symposium on Computer Architecture
on High Performance Computing, pages 159–167, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[9] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem. Data Min.
Knowl. Discov., 2(1):9–37, 1998.

[10] D. L. Hung-sik Kim and. Parallel Linkage. Technical report,
The Pennsylvania State University, 2007.

[11] H. Kawai, H. Garcia-Molina, O. Benjelloun, D. Menestrina,
E. Whang, and H. Gong. P-swoosh: Parallel algorithm for
generic entity resolution. Technical Report, Stanford Info-
Lab, 2006.

[12] B.-W. On, E. Elmacioglu, D. Lee, J. Kang, and J. Pei. Im-
proving grouped-entity resolution using quasi-cliques. In
ICDM ’06: Proceedings of the Sixth International Confer-
ence on Data Mining, pages 1008–1015, Washington, DC,
USA, 2006. IEEE Computer Society.

[13] M. H. Peter Christen, Tim Churches. Febrl: A parallel open
source data linkage system. In Springer Lectures Notes in
Artificial Intelligence, Proceedings of the 8th Pacific-Asia
Conference, PAKDD 2004, volume 3056, pages 638–647,
Sidney, Australia, 2004. Springer.

8686

