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Abstract—We discuss the design and the implementation of
Locus, a system and a language to orchestrate the optimization
of applications. The increasing complexity of machines and
the large space of program variants, produced by the many
transformations available, conspire to make compilers deliver
unsatisfactory performance. As a result, optimization experts
must intervene to manually explore the space of program
variants seeking the best version for each target machine. This
intervention is unproductive, and maintaining and managing
sequences of transformations as new architectures are adopted
and new application features are incorporated is challenging.

Locus allows collections of program transformation sequences
to be specified separately from the application code. The language
is able to represent in a clear notation complex collections of
transformations that are applied to code regions selected by
the programmer. The system integrates multiple optimization
modules as well as search modules that facilitate the efficient
traversal of the space of program variants. Locus is intended to
help experts in the optimization process, specially for complex,
long-lived applications that are to be executed on different
environments. Four examples are presented to illustrate the
power and simplicity of the language. Although not the primary
focus of this paper, the examples also show that exploring the
space of variants typically leads to better performing codes than
those produced by conventional compiler optimizations that are
based on heuristics.

Index Terms—code
domain-specific language.

generation, optimization, compilers,

I. INTRODUCTION

Due to the complexity of today’s machines, the gap between
the performance of hand-tuned and compiler-generated code
has grown substantially and software developers must devote
significant time to benefit from computing power. Furthermore,
each architecture typically requires a different sequence of
optimizations to attain a high fraction of its nominal peak
speed. This complicates performance portability and code
maintainability.

A critical challenge in developing complex, long-lived
applications is to figure out how to manage different optimized
versions of the same code tailored to different architectures
and keep them up to date as new features are added to the
application.
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Although programmers can make use of a catalog of program
optimizations aimed at locality improvement, enhancement of
instruction level parallelism, latency hiding, improved register
utilization, and vectorization [1]-[3], their implementation
is not straightforward, and composing and implementing a
collection of transformations correctly into a final optimal
version further increase the difficulty. In addition, applying
optimizations tends to complicate the code, hurt readability,
and the result is unlikely to be performance-portable.

Existing tools commonly require considerable manual refac-
toring to improve performance [4]-[6], and provide little control
over the steps being carried out. They are also not prepared to
coexist with other tools and cannot be incrementally adopted.

Locus is a semi-automatic approach to assist performance
experts and code developers in the performance optimization
process of programs developed in mainstream programming
languages (C, C++, and Fortran). It combines expert knowledge
with empirical search, automates much of the optimization
process and gives total control to the developers.

Locus decouples the performance expert role from the
application expert role (separation of concerns). It allows
the use of architecture-specific optimizations while keeping
the code maintainable in the long term. Locus orchestrates
the application of transformations to a baseline version of
the code and coordinates the empirical search for the best
sequence of optimizations and their parameters. The application
of the optimizations and the empirical search are programmed
using a domain-specific language (DSL) in what we refer
as optimization programming. An optimization program can
make use of transformation modules from different collections
available in the system, such as the ones developed based on
Rose [7] and Pips [8].

The baseline version is defined by the developer, but it
should be as readable as possible and avoid architecture- or
compiler-specific optimizations.

Locus makes use of a powerful language for programming
the orchestration of optimizations and for representing complex
optimization spaces. It is designed to facilitate the integration
of different optimization and empirical search modules.
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Fig. 1. The Locus system.

The main contributions of this work are:

o Locus, which is, as far as we know, the first programming
language capable of representing complex spaces of
program variants generated by multiple transformation
sequences for mainstream programming languages (C,
C++, Fortran). It is similar to what other systems have
done through rewriting rules [9], [10] and code genera-
tion [11], but the manipulation of mainstream languages
requires a different approach to enable the application of
compiler transformations and the concise representation
of collections of transformation sequences;

« a translator and an optimizer for Locus. Using a translator,
instead of a library, makes the notation less verbose and
enables the automatic optimization of Locus programs;

o the first system that is able to manage the application of
different transformations to different code regions;

o and a system that brings together transformations, opti-
mization space generation, and traversal of the search
space.

Section II provides a detailed description of the Locus system.
Section III describes the optimization language, whereas
Section IV presents the strategy used for integrating external
transformation and search modules. Section V presents experi-
mental results. We finish with a discussion of related work in
Section VI, and conclusions and future work in Section VII.

II. Locus OPTIMIZATION SYSTEM

Program code is typically altered by the numerous optimiza-
tions needed for each possible target environment (architecture
and software stack). Over time, the code becomes unrecogniz-
able, difficult to maintain, and challenging to modify. Moreover,
as the program evolves, it is difficult to keep the optimizations
up to date. In an attempt to ease this problem we present the
design and implementation of Locus, a system for optimizing
complex, long-lived applications for efficient execution on
different environments.

The system is based on the idea that optimizations should not
be embedded in the application code. Instead, a program written
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Fig. 2. Two workflows: direct and search.

in a DSL specifies the optimization sequences to be explored,
and is kept separate from the source code to be optimized.
In the source code, regions of interest (also referred as code
regions) are marked and given an identifier. The optimization
program uses this identifier to specify where to apply each
transformation. When multiple regions have the same identifier,
the same sequence of optimizations will be applied to each of
them.

The system is non-prescriptive, which means that if none of
the transformations in the optimization program can be applied
or improve performance, the baseline version (original code)
is used instead. This guarantees that there is always a version
available for execution on all targeted machines, even though
it might be far from the the fastest possible.

Through the Locus program, the software developer has
complete control over the optimization sequences that are to be
attempted to improve performance. It can be said that a Locus
program defines an optimization space that can be very large
and in many cases impossible to be fully traversed. Therefore,
the system is designed to use methods that can find efficient
solutions without traversing the whole space. Locus programs
can be developed separately from the base code, enabling
separation of concerns.

The system itself does not check for correctness. It is left
to each module to check (or not) whether the optimization is
legal. Given the limitations of the legality check implemented
by some tools (especially with pointers), a programmer might
feel interested in enforcing an optimization when she/he knows
it is legal.

A prototype of Locus has been implemented in Python. It
accepts C, C++ and Fortran programs. The system (Figure 1)
contains two classes of front-ends that read, parse, and analyze
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their respective inputs: one for the optimization language and
the other for the baseline source code.

The current prototype is limited to source-to-source opti-
mizations and cannot handle lower level optimizations (e.g.,
register allocation, instruction reordering). At the source
level, it is easier to mark and keep track of optimizations
intended for each code region. Previous work [12] has required
manual intervention to identify tagged code in lower-level
representations. The system’s approach, though, is powerful
enough to apply any compiler optimization available to the
system as long as the subsequent optimization comprehend the
previous optimization output.

The Locus language is dynamically typed and the system
includes a translator and an optimizer for it. At run time, the
resulting high-level representation of the optimization program
is interpreted to generate variants of the source code.

Besides the language, the system defines an interface to use
external transformation and search modules. The idea is to
have a collaborative environment where existing modules can
be used and integrated in a single system. This also enables
comparison of modules, and once they are integrated in the
system, it becomes easy to empirically search for the best
result across modules.

The implementation of a wrapper function that extends the
interface is required to enable the communication between
modules and system. The wrapper function is responsible
for handling and returning to the system the exit status (e.g.,
successful, error, illegal) of a module’s invocation. In the case
of a search module, it is also necessary to implement a function
that converts between search space representations.

The programmer defines code regions in the source code
using C pragmas or Fortran comments. There are two types of
annotations: block and loop. Figure 3 is an example of code
region with a loop annotation.

int main()

{
int i, Jj, k;
double t_start,
init_array();
t_start = rtclock();

t_end;

#pragma @Locus loop=matmul
for (i=0; i<M; i++)

for (j=0; J<N; Jj++)
for (k=0; k<K; k++)
C[i][3] = betaxC[i][]J] + alphaxA[i][k]*B[k][]];

t_end = rtclock();

print_array();

printf ("Time (ms)_=_%7.51f\n", t_end-t_start);
return 0;

Fig. 3. A C program containing a loop nest with the identifier to be referenced
in the optimization program.

The block annotation indicates the begin and the end of
the code region. The loop annotation applies to the first
loop nest after the annotation. Loop annotations are for loop
transformations, and block annotations for alternative algorithm
selections or optimizations comprising multiple code regions.

In Locus, it is possible to specify sequences of transfor-
mations for a particular block or loop or for a collection
of these (when multiple regions are labeled with the same
identifier). This ability to target transformations to specific
regions is useful, because certain transformations are only
effective on particular code segments. For example, tiling
is effective only on loops that access data items multiple
times, and distribution for loops enclosing multiple statements.
Besides, some transformation modules only work on particular
classes of code segments although others are more generally
applicable. For example, a loop interchange module may only
work on perfectly nested loops, whereas others can operate on
any kind of loop nest.

Figure 2 presents the two workflows of Locus: direct
and search. The direct workflow applies one sequence of
transformations and generates an optimized variant of the
baseline version. The search workflow applies when the Locus
program contains search constructs. It starts by converting
the optimization space from the Locus representation to the
search module’s representation. The search module returns a
point from the optimization space that contains a single value
for each search construct. These values are used to build a
representation of the optimization program that is applied to
the baseline. The resulting code is evaluated according to a
metric (e.g., execution time). The metric is then returned to the
search module which may use that to decide which point in the
optimization space to assess next. The number of assessments
made by the search module is an important parameter. The
more assessments are made the higher the chance of finding
the optimization sequence closest to the optimal. At the end,
the result is a Locus direct program that can be shipped with
the baseline source code to be reused for machines with similar
environments.

Changing the source code may render the optimizations
defined in a Locus program illegal, incorrect or useless. It is
necessary to keep the coherence between the code regions
defined in the source code and the optimizations that are
supposed to be applied to them. The solution we found is
to hash the code region and use the key to check for code
changes to be able to warn the programmer.

A. Optimization Space

The optimization space specified by a Locus program is
defined by a number of dimensions including compilers, their
versions and flags, data structures, loop transformations, and
their parameters (e.g., tile sizes, unroll factors).

Conditional expressions can be used to segment and represent
the optimization space as a decision tree. Optimizations on
conditional spaces have been shown on selecting hyperpa-
rameters to correctly apply machine learning algorithms [13].
Representing and efficiently traversing conditional spaces is
more challenging than working with flattened spaces and not
many techniques are available to manipulate conditional spaces.

The use of conditional spaces fits well on the code opti-
mization process. In this domain, conditionality can be seen,
for instance, in the data structures selection process, which
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heavily depends on the target architecture. In the same way, the
compiler flags depend on the compiler used as they significantly
vary across compilers. Numerous choices depend on the
architecture used, including the compilers, data structures,
and loop transformations. The loop transformations commonly
depend on how the data are laid out as well as on memory
hierarchy.

The programmer exposes the optimization space using the
Locus constructs and each code variant becomes a point in
that space.

(coderefreg) = ‘CodeReg’ NAME (block)

(optseqdef) := ‘OptSeq’ NAME * (’[(arglist)]‘) " (block)
(tooldef) := ‘Module’ NAME (block)

(querydef) ::= ‘Query’ NAME ° (’[(arglist)])" (block)
(searchblock) ::= ‘Search’ (block)

(extern) ::= ‘extern’ (mol) ;’

(import) ::= ‘import’ STRING °;’

(defmethod) ::= ‘def’ NAME ° ('[{arglist)])" (block)
(block) ::= “{’ (subblock) ‘}’

(vubblmk) = (block) ( “OR’ (block) )+ | (block) | (stmt)
(stmt) :: <¥etvlml) | (wmpoundvzmz)

(Aetstmt) (smallstmt) ( <;° (smallstmt) )* *;’
(compoundstmt) = (ifstmt) | (forstmt) | (whilestmt)
(smallstmt) ::= (optionalstmt) | (assignstmt)

(assignstmt) == (testlist) ‘=’
(optionalstmt) ::= “*’(orexprstmt) | {orexprstmt)
u= (testlist) (‘OR’ (testlist))x
(forstmt) = < (smallstmt) “;° (test) <;’
(whilestmt) ::= ‘while’ (test) (block)

ifstmt) = ‘if’ (test) (block) (‘elif’ (test) (block))* [‘else’ (block)]
rangeexpr) = (expr) .. (expr) [.. {(expr)]

testllst) u= (test) (4,7 (test))x [¢,’]

test) == (andtest) (‘| |’ (andtest))x*

undtevt) u= (nottest) (‘s&’ (nottest))x

(
(
(
(
(
(nottest) ::=
(
(
(
(
(

(optionalstmt)

(orexprstmt)

‘for’ (smallstmt) )’ (block)

‘not’ (nottest) | (comparison)
(expr) ({compop) (expr))*
= (term) | {expr) (‘+’1°=") (term)
(power) | (term) (‘+’1°/°1°%’) (power)
= (mol) [‘»~*" factor]
(mol) <O [arglist)] *)
‘enum’ “( testlist ©)”
| ‘poweroftwo’  (* (rangeexpr) )’
| ‘integer “(’ (rangeexpr) ‘)’
| ‘permutation’ ‘(’ ({test) | (listmaker)) )’
I (mol)y *.” NAME | (atom)
NAME | NUMBER | STRING
= (test) (*, (test) ) [*,’]
test (4, test)x [*,’]
((argument) *,”)x ((argument) [,’])
(test) | (test) ‘=" (test)
ST == > =" ] =

compari con) n=
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Fig. 4. The extended Backus-Naur form of Locus.

III. Locus OPTIMIZATION LANGUAGE

The optimization program uses a language to define the
sequence of optimizations. Figure 4 shows the (partial) extended
Backus-Naur form of the language. The heading CodeReg
NAME indicates that the optimization steps in the <block> that
follows are to be applied to the regions labeled NAME.

To name optimization sequences that are not tied to any code
region there is the construct OptSeq NAME, which defines a
collection of transformations that can be invoked using NAME.

import "RoseLocus";

def printstatus (type) {
print "Tiling_selected:

}

OptSeq Tiling2D () {
tileI = poweroftwo(2..32);
tileJ = poweroftwo (2..32);
RoseLocus.Tiling (loop="0",
return "2D";

}

OptSeq Tiling3D() {
RoseLocus.Tiling (loop="0",
return "3D";

}

CodeReg matmul {
tiledim = 4;
tiletype = Tiling2D()
printstatus (tiletype) ;
if (tiletype == "2D") {

RoseLocus.Unroll (loop=innermost,
}
}

"+type;

factor=[tilel,tiled]);

factor=[(4,4,8]);

OR Tiling3D();

factor=tiledim);

Fig. 5. A Locus program example.

These collections of transformations can be reused and invoked
from different CodeRegs and other OptSegs. Only blocks within
OptSeq or CodeReg can invoke transformation modules that
will operate on the regions of interest. Regular methods can
also be implemented using the keyword def but they cannot
contain any optimization or query call.

Figure 5 is an example of Locus program that tiles a baseline
version of matrix-matrix multiplication (Figure 3). It shows
a search space that includes two OptSegs: one, Tiling2D,
for tiling the two outermost loops and another, Tiling3D,
to tile the three outermost loops, which, in this case, is the
whole loop nest. The transformation sequence that applies
to the loop labeled matmul in Figure 3 has header CodeReg
matmul. This sequence specifies, using the Locus OR operation,
that Ti1ing2D and Tiling3D will be used to create different
collections of points in the space of transformations. Ti1ing2D
will create 25 points on the space for the tiles of dimension
2 by 2,2 by 4, ..., 2 by 32, ... 32 by 32, whereas Ti1ing3D
will create one additional point on the search space for a tile
of dimension 4 by 4 by 8. When Tiling2D is applied, the
innermost loop is also unrolled after tiling. The tiling factor
parameters in Tiling2D are a range of values, whereas the
ones for the Tiling3D are fixed.

There are also two constructs on the language to represent
modules and queries. The Query represents procedures to
analyze and extract information from a code region. It can
only be invoked from inside a CodeReg or an OptSeq. The
Module construct represents a set of transformations or queries.
The Query construct is necessary because, differently than
OptSeq, its results can be used by search constructs, and, as
better explained later in the text, they need their information
defined before the search process starts. The rest of this section
provides more information about the language.

Search Constructs: Locus has multiple search constructs
to expose and define the optimization space. The search
constructs are:

1) OR Blocks;
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2) OR Statements;

3) Optional Statements;

4) enum, integer, float, permutation, poweroftwo, loginteger,

and logfloat data types.

An OR can be used between blocks of code (set of statements
inside curly brackets (e.g., {optA;} OR {optB;})) and between
statements (e.g., transfA OR transfB;). They are used to describe
alternative optimization sequences. The statements or blocks are
selected at run time and it is not guaranteed that all possibilities
will be evaluated; this decision depends on the search module.

In the same way, Locus may have optional statements. Any
statement (including OR statements) marked with a preceding
may or may not be executed and adds a dimension to the space
of optimizations. The OR statements have precedence over
the optional construct. The semantics of an optional statement
is the same as having an OR statement in which one of the
options is None. To keep this semantics, assignments cannot
be optional statements.

The constructs enum(<value>,...), permuta-
tion(<value>,...), and [integer, float, permutation, poweroftwo,
loginteger, logfloat] (<min>..<max>) are useful for defining
collections of values in the search space. The enum exposes to
the search all values received; it can be used for comparing the
performances of different compiler flags (e.g., enum(-02,-03)).
The permutation exposes to the search all the permutations
of a list. One use of permutation is to assess all orders of a
loop nest as a parameter of the loop interchange optimization.
The poweroftwo exposes to the search all values that are
power of two on the given range. The integer exposes to the
search all the integer values in the range. Note that “..” is
used to represent a range. The integer can be used to find the
best dimensions when tiling a loop nest, and poweroftwo can
reduce the search time as it covers fewer values for the same
range. The same reasoning is applied to the loginteger and
logfloat constructs.

The values used in these constructs may also be another
search variable. This is specially useful for defining constraints
that depend on previously selected variables. For instance, in a
sequence that tiles and then unrolls, the unroll factor is limited
by the number of loop iterations, which in turn is defined
by the block size selected using another search variable. If
the block size was selected as 32, the search space for the
unroll factor should be constrained by that value. The use of
constraints reduces the size of the space and potentially speeds
up the search process.

Data Structures: Locus also accepts lists, tuples and
dictionaries (in similar fashion to Python). The lists are repre-
sented by enclosing elements within square brackets, tuples by
enclosing elements within parenthesis, and dictionaries through
the construct dict. Lists and dictionaries are mutable and tuples
are immutable.

Types: Beyond the data structure types (lists and dictio-
naries) there are two other basic types: numbers and strings. As
with tuples, these types are immutable. Strings are surrounded
by double quotes. Signed integers and floating-point real values
are the types of numbers accepted.

Control Flow: The control flow statements available are if,
for, and while. They can be used to decide, during run time, how
to proceed the optimization according to previous decisions.
For instance, inside CodeReg it is possible to define different
sequences of optimizations depending on the compiler used.
The compiler to be used can be expressed as a variable (e.g.,
compiler=enum("gcc","icc")), and an if can be used to execute
different sequences of optimizations according to the value
assigned to the variable compiler during the search process.

Scope: Each block of code has its own scope; the scope
of the control flow constructs, however, is the same as their
parent block. Variables defined inside if, for, and while are
then possible to be accessed after the end of their execution.

Import: Tt is possible to import optimization sequences
created by others. This is an important feature as experts can
share their recipes for common code regions running on similar
architectures. It is also used to import modules and optimization
definitions to be used on CodeReg and OptSeq.

Search Block: The Search block is used to give the system
commands on how to build, run, and measure the chosen
performance metrics. The statements in the search block may
include flow statements and take actions based on variable
selections made in the global scope.

Hierarchical Indexing: This indexing is made of numbers
separated by periods. Each number represents a level, starting
from 0, in a statement block or a loop nest. The value of the
number represents the order of the statement or loop in that
level. For instance, "0.0.0" refers to the innermost loop in the
Figure 3. In case of two innermost loops, the second one would
be referenced as "0.0.1". Using this indexing we are able to
reference any statement or loop in a code region.

IV. MODULES INTEGRATION

An important goal to the system is to have a collaborative
environment where external transformation and search modules
can be integrated. The following subsections provide more
information about the integration of such modules.

A. Integration of Transformation Modules

One significant challenge in developing the system was to
integrate and make possible the interaction with different and
unrelated optimization modules. The integration programmer is
responsible for implementing the translation of the information
so that it can be fed from one module to another.

The current implementation deals only with source-to-source
transformations. A very common workflow for the integrated
modules is: mark the code region according to the module
specification, unparse the code (generates source code), apply
the optimization, parse the code again and translate it back
into Locus internal representation for source codes (abstract
syntax tree and code region data structure).

Several transformations were integrated using this sequence.
A wrapper function for each translator implements it
using the system interface. Before calling the optimization
module, the abstract syntax tree is modified to mark the
code region that the module is supposed to optimize.
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These marks (e.g., labels, pragmas) depend on the module
integrated. After the optimization has finished, the code
regions must be identified again as the result is parsed
back into the internal abstract syntax tree. The interface
is comprised of operations to modify the internal abstract
syntax tree, such as: replaceCoregWithPragma (),
replaceCoregWithLabel (), addPragma (), addLabel (),
replacelLabelWithCoreg(), removeLabel (),
replacePragmaWithCoreg (), and removePragma ().

There are four collections of transformation modules cur-
rently available: Pips, RoseLocus, Pragmas, and Builtln. Next,
we discuss how they interface with the system, and how to
use their optimizations.

1) Pips: A source-to-source compilation framework for
analyzing and transforming C and Fortran 77 programs [8],
Pips has a Python interface and the loop optimizations are
invoked on loops marked with labels. Locus adds to the code
region a label and removes the pragma that originally identified
the region using the replaceCoregWithLabel () operation.
The changed AST is unparsed in a temporary file; Pips is
invoked; after finishing the optimization, the resulting code is
read and parsed, and its AST and code region data structure
are rebuilt.

The optimizations from Pips available in Locus are: loop
unrolling, loop GenericTiling, loop fusion, and unroll-and-
jam. The GenericTiling accepts a matrix representing the
tiling transformation, but also two extra parameters to enhance
parallelism of the generated code: file direction, which specifies
the scanning directions of the tiles, and local tile direction,
which specifies the scanning directions of the iterations inside
each tile.

2) RoseLocus: We implemented our own set of annotation-
based source-to-source loop transformations using the Rose
infrastructure [7]. Loop unrolling, tiling, interchange, unroll-
and-jam, loop invariant code motion, and scalar replacement
are available. The interface with RoseLocus is similar to that
with Pips. However, instead of labels, pragmas are added to
the code regions.

We have also implemented a query to check whether the
available modules can compute the data dependences of the
source code. The dependences are used by some optimizations
to check if the transformation would be legal.

3) Pragmas: Compiler-specific pragmas can be added using
this module. In the experiments, ivdep and vector always
are used for enhancing vectorization with the ICC compiler.
It is also possible to execute loops in parallel by adding
omp parallel for pragmas [14]. The module to apply the
OpenMP pragma accepts the schedule (dynamic or static) and
the chunk size as parameters.

4) BuiltIn: 1t contains modules to analyze or transform the
source code by manipulating the internal AST. Queries to get
information about loop nests are available. ListInnerLoops and
ListOuterLoops return a list with the innermost and outermost
loops, respectively, from a code region. IsPerfectLoopNest re-
turns whether the loop is perfectly nested. And LoopNestDepth
returns the depth of a loop nest.

It also contains Altdesc that is used to replace the code
region with external code snippets. Its functionality is similar to
having macros in the program. It is mostly used to incorporate
hand-optimized kernels into an optimization sequence.

B. Integration of Search Modules

Three functions must be implemented to enable the inte-
gration of a search module: 1) convertOptUniverse, which is
responsible for automatically converting the Locus optimization
space of all code regions to the module’s search space. The
space conversion usually includes converting data types, and
defining parameters and options that will be used during the
search process; 2) search, which is responsible for starting the
search process. The search can only start after the conversion
is finished; 3) a conversion back to the Locus representation
that is used after a point in the space is chosen. This point
information contains a selected single value for each search
construct on the space. The Locus code can now be interpreted
and the optimizations carried out.

Two modules were integrated to explore the space of
optimizations: Opentuner [15] and Hyperopt [16]. Next, more
details about each tool integration are provided.

1) OpenTuner: The search constructs for OR blocks, OR
statements, and enum are converted to OpenTuner’s EnumPa-
rameter. The optional statements are represented using the
BooleanParameter. The other search constructs have straight-
forward representations between the two spaces. For instance,
permutation is represented by PermutationParameter.

The use of numerical search variables that depend on
other numerical search variables is not natively supported
by OpenTuner. Locus supports it, but, to precisely define the
optimization space, the minimum and maximum possible values
that reach the search variable parameters must be computed.
A data-flow analysis through the use-def chains of the Locus
program is performed to get the boundary values.

When a point is selected for empirical evaluation and the
values of the search variables are known, it is necessary to
check whether the dependent variable is valid. For instance,
in Figure 7 the second level of tiling (tileI_2, tileK_2,
and tileJ_2) depends on the results of the first level (tileT,
tilek, and tileJ). In other words, we need to check that
the value selected for tileI_2 is smaller or equal to the one
selected for tileI; otherwise, this variant is invalidated, and
the search process moves on to the next one.

2) HyperOpt: All the non-numerical search constructs are
represented by the choice statement. The numerical search
constructs use randint parameter. Hyperopt accepts the use of
conditional search space. The use of search variable parameters
dependent on other numerical search variables are treated in
the same way as in OpenTuner.

C. Optimizations to Locus Programs

Optimizations are applied to the Locus programs to reduce
the system’s execution time. These optimizations can have a
major effect on the search. In the search workflow, the Locus
direct program is interpreted for each variant evaluated.
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Fig. 6. Speedup for Locus, Pluto, and Intel MKL on Stencils and Matrix-Matrix Multiplication (DGEMM).

Constant propagation, constant folding and dead code
elimination are applied before the Locus space is converted
to the search module’s space, but after the execution of any
Query operation that is used by any search construct. The
Query operations are assumed to have a deterministic result
throughout the search process if they are used by any search
construct. The parameters of the search constructs need to be
known when the search is defined. Therefore, these Query
operations are executed and their values replace their calls on
the code.

The use of these optimizations can drastically reduce the
search time by reducing the space and improving the quality of
variants suggested to be assessed. For instance, in Section V-D,
there is one example in which optimizations can only happen
if the loop nest depth is greater than 1. Therefore, for loop
nests with depth equal to 1, we can exclude from the search
space all the search constructs on the code conditional to the
loop nest depth greater than 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the code
generated by Locus. We compare it to the code generated by
Pluto [17] (pet branch version 0.11.4) with no parameter tuning.
The results were obtained on a 10-core Intel Xeon E5-2660 v3
processor clocked at 2.60 GHz (32 KB private L1 instruction
cache, 32 KB private L1 data cache, 256 KB private L2 cache,
25 MB shared L3 cache) with 62 GB of RAM, and running
Linux kernel version 4.4.0 (x86-64). The compiler used, if not
otherwise stated, was ICC 17.0.1 with the flags -03, -xHost,
—-ipo, —ansi-alias, and —fp-model precise.

The experiments were conducted using both OpenTuner
and HyperOpt. However, the former was more likely to find
the best variant faster due to a more efficient meta-technique
implementation, and by avoiding re-assessing variants already
evaluated.

A. Matrix-Matrix Multiplication

We present here results for the optimizations in Figure 7
applied to the baseline code shown in Figure 3. The baseline
code is a naive implementation of the double-precision matrix-
matrix multiplication (DGEMM) and also served as input for

Search {
buildcmd = "make_clean;_make";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange (order=[0,2,1]);
tileI = poweroftwo(2..512);
tileK = poweroftwo (2..512);
tileJ = poweroftwo (2..512);

Pips.Tiling(loop="0", factor=[tileI, tileK, tiledl]);
tileI_2 = poweroftwo (2..tileI);
tileK_2 = poweroftwo (2..tilekK);
tileJ_2 = poweroftwo(2..tilelJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tilelI_2, tileK 2, tiled_21]);

{
Pragma.OMPFor (loop="0") ;
} OR {
Pragma.OMPFor (loop="0",
schedule=enum ("static", "dynamic"),
chunk=integer (1..32));

Fig. 7. Locus program for optimizing Matrix-Matrix Multiplication (DGEMM).

Pluto and Locus. Its execution time on a single core was used
to calculate the speedups. The three matrices involved have a
2048 by 2048 shape. Figure 7 represents an optimization space
of 34,012,224 possible variants (according to OpenTuner).

The code in Figure 7 applies loop interchange and a two-
level hierarchical tiling. Different tile sizes were explored at
each level using 6 search variables (tileI, tileI_2, tilekK,
tileK_2,tiled, and tileJ_2) that vary across all powers of
two between 2 and 512. The best result used a tiling shape on
the upper level represented by I = 512, K = 256, and J = 32;
and on the lower level by /_ 2 =8, K_2 =28, and J_2 = 128.
We apply an OpenMP pragma on the outermost loop and use
an OR block to explore the space of optimization that the
parallel for pragma provides: scheduling and chunk. The
best variant, however, used the default values of the parallel
for.

The right side of Figure 6 presents results from 1 to 10 CPU
cores. They are compared to code generated by Pluto (flags
-tile, -12tile, and -parallel) and to Intel MKL 2017.0.1.
The Locus search was limited to 1,000 variants for each case
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#pragma @Locus loop=heat2d

for (t = 0; t < T; t++)
for (i = 1; 1 < N+1; i++4)
for (j = 1; j < N+1; J++)
A[(t+1)%2][1][J] = 0.125 = (A[t%2][i+1][]]
= 2.0 » A[t%2][1]1[J] + A[t%2][i-1][]]
+ 0.125 » (A[t%2][1][]j+1]
- 2.0 » A[t%2][1][]] + A[t%2]([1][]-1]
+ A[E%21 01110315
Fig. 8. Heat 2D stencil kernel.
Search {
buildcmd = "make_clean; _make";
runcmd = "./heat-24d";

}
CodeReg heat2d({

skewl = poweroftwo (16..128)

tmat = [[ skewl, 0, o],
[-skewl, skewl, 01,
[-skewl, 0, skewl]l];

Pips.GenericTiling (loop="0", factor=tmat);
Pragma.Ivdep (loop="0.0.0.0.0.0");
Pragma.Vector (loop="0.0.0.0.0.0");

}

Fig. 9. Locus program for optimizing Heat 2D stencil.

and took on average 80 minutes to complete. Pluto generated
code in less than a second. The code generated by Locus using
10 cores was 553 times faster than the baseline. Intel MKL
was faster than Locus when using 1, 2, and 6 cores, but slower
for 4, 8, and 10 cores. On average, the best variant generated
by Locus was 3.45 times faster than the code generated by
Pluto. The reason for the performance difference is not the set
of transformations applied, Pluto and Locus apply the same
transformations, but the use of empirical search to identify the
best tile sizes.

B. Stencil Kernels

We evaluated tiling transformations using Locus on 6 stencil
codes: Jacobi 1D and 2D, Heat 1D and 2D, and Seidel 1D
and 2D'. The stencils were executed for 1,000 time steps; the
dimensions of the 2D versions are 2,000 by 2,000 elements,
and of the 1D are 1,600,000 elements (double-precision). As
an example, Figure 8 presents the Heat 2D baseline version,
and Figure 9 the optimizations applied.

We applied a Skewing-1 [18] tiling shape using Pips’
GenericTiling. In the same way as Pluto, pragmas for improving
vectorization are inserted before the innermost loops.

Pluto generated code in less than a second. Locus execution
time (including the empirical search) for the stencil Heat 2D
was the longest at 9 minutes. Jacobi 1D and 2D, Heat 1D,

Seidel 1D and 2D lasted 3, 6, 2, 2, and 6 minutes respectively.

The Locus-generated code outperforms that of Pluto (flags
-tile and -pet) as shown in Figure 6. Once again the
empirical search showed its importance on the process, as
the set of transformations applied by both was the same.

The stencil codes were based on the examples provided by Pluto (pet
branch) and can be found at http://pluto-compiler.sourceforge.net.

#pragma @Locus loop=Scattering
for (int nm = 0; nm < num_moments;
for (int g = 0; g < num_groups; ++g)
for (int gp = 0; gp < num_groups;
for (int zone = 0;
for (int mix =

++nm)

++gp)
zone < num_zones;

zones_mixed[zone];

++zone)

mix < zones_mixed[zone] + num_mixed[zone]; ++mix) {
int material = mixed_material[mix];
double fraction = mixed_fraction[mix];
int n = moment_to_coeff[nm];
#H###
# Address calculation to be included here.
#H##H

+*phi_out += xsigs x xphi % fraction;

Fig. 10. Kripke’s Scattering kernel.

datalayout=enum ("DZG", "DGZ", "GDZ", "GZD", "ZDG", "ZGD") ;
CodeReg Scattering {

if (datalayout == "DGZ") {
omploop="0.0.0.0";

} elif (datalayout == "GDz") {
looporder=[1,2,0,3,4];
omploop="0.0.0.0";

} elif (datalayout == "GZID") {
looporder=[1,2,3,4,0];
omploop="0.0.0";

} elif (datalayout == "ZGD") {
looporder=(3,4,1,2,0];
omploop="0";

} elif (datalayout == "ZDG") {
looporder=[3,4,0,1,2];
omploop="0";

} elif (datalayout == "DZG") {

looporder=[0,3,4,1,2];

omploop="0.0";
}
sourcepath="scatter_"+datalayout+".txt";
BuiltIn.Altdesc (stmt="0.0.0.0.0.3", source=sourcepath);
RoseLocus.Interchange (order=looporder) ;
RoseLocus.LICM() ;
RoseLocus.ScalarRepl () ;
Pragma.OMPFor (loop=omploop) ;

Fig. 11. Locus program for optimizing Kripke’s Scattering kernel.

C. Kripke

Kripke [19] is a deterministic particle transport code and
a proxy-app for the Ardra project developed at LLNL. It
supports storage of angular fluxes using a three dimensional
array indexed by direction (D), group (G), and zone (Z). It has
5 kernels: LTimes, LPlusTimes, Scattering, Source, and Sweep.
Their implementation contains 6 hand-optimized versions of
each kernel, one for each data layout. Each layout corresponds
to a different linearization of the 3D arrays according to one
of the 6 permutations of D, G, and Z.

Using Locus, we can create a more compact representation
of all versions of Krypke. Our representation contains only
one skeleton for each kernel plus the code for each of the
six address computations, one for each data layout. We then
use transformation modules to generate versions that achieve
a performance comparable to that of the hand-optimized ones.

Figure 10 contains the code representing our version of one
of the five kernels, Scattering, and Figure 11 contains the Locus
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Fig. 12. Kripke execution time comparing hand optimized versions and using
Locus for 6 different data layouts.

program to create the six versions of the kernel. These will
differ in the evaluation of the addresses used by the expression
(*phi_out += *sigs % *phi x fraction) at the end of
the loop in Figure 10.

The main structure of the other four kernels (LTimes,
LPlusTimes, Source, and Sweep) is very close to the one shown
for Scattering and the Locus program for each of these kernels
is similar to that in Figure 11.

The Locus program specifies that, for Scattering, the
name of each of the six data layouts (DZG, DGZ, GZD,
ZDG, and ZGD) will be used to select one of six differ-
ent files (scatter_DZG.txt, scatter_DGZ.txt, .., and
scatter_zGD.txt). Each of these files contains one way
of computing the addresses depending on the layout. Different
versions of Scattering are created by inserting the content
of each of these files into the innermost loop of the kernel
using the module BuiltIn.Altdesc. The specific place of
insertion is after the third statement of the innermost loop
which is identified as 0.0.0.0.0. 3. Then:

« the loop nest order (looporder) is altered by the module
RoselLocus. Interchange;

« loop invariant code motion is applied by transformation
module RoseLocus.LICM to move each part of the
computation to the most efficient location within the loop
nest;

o scalar replacement [20] is performed to improve register
usage by the module RoseLocus.ScalarRepl;

« the loop to be parallelized (omploop) is annotated with
OpenMP directives by the module Pragma.OMPFor.

The data layout was the only search variable defined. Other
possibilities, however, could have been added to the search
space. For instance, we used the loop nest orders identical to
the hand-optimized versions, but it would be straightforward
to explore different orders for each data layout.

TABLE I
THE BENCHMARKS USED FOR LOOP EXTRACTION, THE NUMBER OF LOOP
NESTS SELECTED AND VARIANTS ASSESSED.

Benchmark # of loop | Variants
nests assessed
ALPBench [23] 13 39
ASC Sequoia [24] 1 3
Cortexsuite [25] 47 1,297
FreeBench [26] 30 431
Parallel Research Kernels [27] 37 1,055
Livermore Loops [28] 11 121
MediaBench [29] 39 159
Netlib [30] 18 260
NAS Parallel Benchmarks [31] 208 23,384
Polybench [32] 93 7,582
Scimark?2 [33] 4 83
SPEC2000 [34] 71 2,228
SPEC2006 [35] 50 216
Extended TSVC [36] 156 6,943
Libraries [37]-[40] 61 1,966
Neural Network Kernels [41] 17 132
Total 856 45,899

Performance attained using Locus is very close to that of
the hand-optimized kernels, as presented on Figure 12, but our
proposed version is simpler and easier to maintain, because it
contains a single version of each kernel for all data layouts.

D. Optimization of Arbitrary Loop Nests

We have shown performance improvements on optimizations
specific to source codes known beforehand. On this experiment,
we used a generic Locus program to optimize arbitrary loop
nests, whose structure and characteristics were not known
in advance. Gong et al. [21], [22] developed a loop nest
extractor and transformed the extracted loops with subsets
of the following two sequences:

1) interchange — unroll-and-jam — distribution — unrolling;
2) interchange — tiling — distribution — unrolling.

We represented these optimization sequences and their sub-
sets in a Locus program, shown in Figure 13. The optimizations
have a data dependence check and only legal transformations
were used to generate variants. The first step is to check if the
data dependences can be computed for the loop nest (if not,
only unrolling is applied). The next step is to check whether the
loop is perfectly nested. Then, the loop nest depth is obtained.
These data are used to define which transformations are going
to be applied next. Interchange is only applied to perfectly
nested loops with nest depth greater than 1. Tiling is only
applied on perfectly nested loops, and unroll-and-jam only on
nests with depth greater than 1. Along with distribution, these
are only applied if the data dependences can be computed.
Unrolling is always applied at the end of the process.

An OR construct is used to express the choice among tiling,
unroll-and-jam, or none before distribution. It is also important
to note the x on the distribution, which denotes that it is
optional.

Table I presents the number of the loop nests extracted and
the number of variants assessed for each benchmark. In total,
3,146 loop nests were extracted, and we selected 856 whose

225



Search {
buildcemd = "make clean; make LOOPEXTRACTED";
runcmd = "LOOPEXTRACTED_../input_10";

}
CodeReg scop {
perfect = BuiltIn.IsPerfectLoopNest ();
depth = BuiltIn.LoopNestDepth();
if (Roselocus.IsDepAvailable()) {
if (perfect && depth > 1) {
permorder = permutation (seq(0,depth));
RoseLocus.Interchange (order=permorder) ;
}
{
if (perfect) {
indexTl = integer(l..depth);
Tlfac = poweroftwo (2..32);
RoseLocus.Tiling (loop=indexT1,
}
} OR {
if (depth > 1) {
indexUAJ = integer (l..depth-1);
UAJfac = poweroftwo (2..4);
RoseLocus.UnrollAndJam (loop=indexUAJ,
factor=UAJfac);

factor=T1lfac);

}

} OR {

None; # No tiling, interchange, or unroll and jam.
}
innerloops = BuiltIn.ListInnerLoops();

«*RoseLocus.Distribute (loop=innerloops) ;
}
innerloops = BuiltIn.ListInnerLoops () ;
RoseLocus.Unroll (loop=innerloops,

factor=poweroftwo (2..8));

Fig. 13. Locus program for optimizing arbitrary loop nests.

execution are longer than 10,000 CPU cycles. The search for
each loop nest was limited to 500 variants. In total 45,899
variants were evaluated. We run Pluto on the same set of
selected loop nests.

Our work was able to reproduce the performance results
presented by Gong et al. However, the Locus program required
37 lines while the implementation by Gong et al. for this
purpose was approximately 1200 lines long. Besides, on
their approach, the implementation of the two optimization
sequences, their subsets, and parameters were hard-coded and
cumbersome to modify. With the Locus approach, modifying

and experimenting new optimization sequences becomes trivial.

In this experiment, the variants generated by Locus and
the code generated by Pluto (flags -tile, —-prevector, and
—unroll) were compiled with GCC 6.3.0 (flags -03, and
-ftree-vectorize).

On average, the best variant generated by Locus achieved
a speedup of 1.15 while Pluto achieved 1.05. Locus could

transform 822 loop nests out of the ones selected and Pluto 397.

Pluto transformed a smaller number of loop nests because it is
based on the polyhedral model. This model is only applicable
to loop nests in which the data access functions and the loop
bounds are affine combinations of the enclosing loop variables
and parameters. Locus achieved speedups higher than 1.05 for
360 loops nests and Pluto for 170. Out of these 170 optimized
by both tools, Locus generated faster code than Pluto on 129
of them.

VI. RELATED WORK

Several frameworks expose a high-level interface for code
transformations. URUK [42] features loop transformations
with unimodular schedules through a script that operates on
a compiler intermediate representation. Loopy [12] carries
out transformations defined by the composition of operations
from a script on tagged loops. It includes a verifier that guard
programmers against incorrect specifications.

CHiLL [43] contains loop transformations and code genera-
tion primitives. It takes as input the original code and a transfor-
mation script with bound parameters, and generates a collection
of code versions. POET [44] is an embedded scripting language
for parameterizing AST-based transformations so that they can
be empirically tuned. Clay [45] provides a transformation set
to allow representing arbitrary polyhedral optimizations in a
separate script or embedded as comments. The Locus language,
however, is able to better represent complex optimization spaces
on applications that have multiple code regions to be optimized.

Orio [4], an annotation-based empirical performance tun-
ing system that takes annotated C source code as input,
generates code variants of the annotated code, and empirically
evaluates the performance of the generated codes, ultimately
selecting the best-performing version to use for production
runs. The X Language [46] provides pragmas that can perform
loop transformations and code transformations defined as
pattern-replacement rules. Locus implements a separation of
concerns and avoids the definition of the optimizations along
with the application code. Besides, our approach also abstracts
the empirical search process, making it easier to compare
different methods.

TunedCnC [47] is focused on separation of concerns through
a declarative tuning framework for improving spatial and
temporal locality on shared-memory and distributed systems.
The many possible groupings of computational steps could
be represented using Locus to search for optimal process
placement.

Lift [10], [48] exploits functional principles to generate high-
performance GPU code. Applications are expressed using a
small set of functional primitives and optimizations are all
encoded as formal, semantics-preserved rewrite rules. These
rules define an optimization space that is automatically searched
for high-performance code. Locus could be adapted to represent
this optimization space and carry out the search.

Other systems focused on the optimization of a specific set
of algorithms. FFTW [49] is a comprehensive collection of
fast C routines for computing the discrete Fourier transform
(DFT). It does not implement a single DFT algorithm, but it is
structured as a library of routines that can be composed in many
ways. ATLAS [11] presents a methodology for the automatic
generation of highly efficient basic linear algebra routines in
different architectures. It isolates the machine-specific features
of the operation to several routines, all of which deal with
generating an optimized matrix multiplication that fits in the
fastest level cache.

The goal of PHiPAC [50] is to produce high-performance
linear algebra libraries for a wide range of systems with mini-
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mum effort. The authors developed parameterized generators
that produce code according to guidelines from a generic model
of a set of C compilers and microprocessors.

SPIRAL [9] is another autotuning system used for digital
signal processing. It has a high-level mathematical framework
that provides the link between the “high” mathematical level
of transform algorithms and the “low” level of their code
implementations.

OSKI [51] is a collection of low-level primitives that provide
automatically tuned computational kernels on sparse matrices.
It defers the tuning until the run time to make decisions about
the data structures and code transformations to be used.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Locus, a new system and a
language for optimizing complex, long-lived applications for
different environments. As architecture-specific optimizations
are required to harness performance available on current
machines, the Locus system is able to integrate different tools
and combine expert knowledge with automated transformations
to assist performance experts and code developers in the
performance optimization process. We presented 4 examples
to illustrate the simplicity of the language and its power to
represent spaces of program variants resulting from complex
transformation sequences.

These examples also show that using empirical search, it
is possible to obtain higher speedups over a baseline version
compared to conventional restructurers. The results, which
include 553x on matrix-matrix multiplication and of up to 4x
on stencil computations, match the hand-optimized performance
for the Kripke transport code, and show good performance
improvements for a collection of loop nests extracted from 16
benchmarks.

As future work, we plan to combine the use of multiple
search modules in the same run to speed up the search process.
Ongoing work aims to help users at designing optimization
sequences.
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