Automated Mapping of Task-Based
Programs onto Distributed and

Heterogeneous Machines

Thiago Teixeira
Alexandra Henzinger
Rohan Yadav
Alex Aiken

SC’23 at Denver, O https://gitlab.com/thiagotei/automap Stanford University

Nov 14

Mapping on EXxisting Heterogeneous Systems

local function make_stencil (radius)
local _demand
nte; e .

pace (int2d), point),
. point),
System Memory

Zero-copy Memory

where

srites (private. (input, output), tines),
reads (xm. input, xp. input, ym.input, vp.input)
[I I 1

then
FB FB FB FB

var € - c.legion_get_current_time in micros()
for x in times do x. T en
| | | |

GPU GPU GPU GPU

1o + interior lo +
sm(i].input

private(i2].input =

var i2 = i - yn_lo + interior lo + (0,)
private(i2].input = ym(i].input

for i in xp do
var i2 = i - xp_lo + { % = interior hi.x + 1, y = interior_lo.y }
private(i2].input = xp(i].input

and

for i in yp do
var 12 = i - yp_lo ¢ { x = interior lo.x, y = interior hi.y + 1}

private[i2].inpat = yp(i].input
end
System Memory

[make_stencil_interior (private, interior, radius)]

return stencil

local stencil = make,

Zero-copy Memory

encil (RADIUS)

Application

GPU GPU GPU GPU

Stanford University

Mapping on EXxisting Heterogeneous Systems

System Memory

Zero-copy Memory

FB FB FB FB

zo | ew | e | e

Mapping assigns: e e
System Memory

e computation to processors

Zero-copy Memory
|

Application « data to memories . . . !

FB FB FB FB
] 1 1]
GPU GPU GPU GPU

Stanford University

Mapping on EXxisting Heterogeneous Systems

Taskl

Task?2 / \
\ Task4

Task3 /
Task5 \

NS

Task7

\—J.>

Mapping assigns:
. tasks to processors

Application « data to memories

System Memory
Zero-copy Memory
|
[| | 1
FB FB FB FB
| | | |
GPU GPU GPU GPU
System Memory
Zero-copy Memory
|
[I I 1
FB FB FB FB
| 1 1 |
GPU GPU GPU GPU

Stanford University

Mapping on EXxisting Heterogeneous Systems

Taskl

Task?2 / \
\ Task4

Task3 /
Task5 \

NS

Task7

\—J.>

Mapping assigns:
. tasks to processors

Application « collections to memories

System Memory
Zero-copy Memory
|
[| | 1
FB FB FB FB
| | | |
GPU GPU GPU GPU
System Memory
Zero-copy Memory
|
[I I 1
FB FB FB FB
| 1 1 |
GPU GPU GPU GPU

Stanford University

Mapping on EXxisting Heterogeneous Systems

Thska 2128 possible mappings!!
Input- and machine-specific!

Y ~S Y ~ Hard to maintain!

Task2
/ \Tzsk 4 \‘ Task3 Task4

/ & /
Tasks e " Tam\? Task6
4
\A 1 Task7

Task7

Previous works considered
assignment only for tasks

Application _ _ _
We consider multiple possible

assignments for data as well!

System Memory

Zero-copy Memory

FB FB FB FB
| | | |
GPU GPU GPU GPU

System Memory

Zero-copy Memory

FB FB FB FB
] 1 1]
GPU GPU GPU GPU

Stanford University

Concrete Example: Simulation OOM

Users may want to run simulations with bigger input than what fits in memory

L

| 320 x 40320 zones
+17

GGGGG

What collections to move off
of frame-buffer?

Stanford University

Naive offloading vs AutoMap

1 node 4 nodes
50x
45x

o
N
8
©
©
= 28x 28x 29X 29x
o
>
o
o
-]
©
3]
O
o

>1.3% >7.1% >14.3% >1.3% >7.1% >14.3%

>Xx% means x% more zones than will fit in Frame-buffer Stanford University

AutoMap

Automate the discovery of good mappings

O Traverses the space of possible mappings and provides the fastest found

O Used in an offline search that tests different mappings

Discrete Search Space:

O Processors kinds: {GPU, OMP} per task
O Memory kinds: {Frame-buffer, Zero-copy, System} per data collection argument
Goals:
O Performance: find better mappings than humans
O Portability: tune mappings to an architecture and/or input
O

Productivity: reduce manual work and help non-experts

Stanford University

AutoMap’s Workflow

AutoMap

run the

reguest a application

with mapping M

mappin
Search —

Driver

AutoMap Fo [Application]

Mapper

. Ay,)
fo A“
1. A o) s

\(\f\o‘

91}6/)

invokes to map
each task run tasks
and data

Profiling
Database

Task-based
Runtime

Stanford University

Optimization Problem

Search space can be immense
o O(PTMC) where P is the number of processor kinds, T is the number of tasks, C is the
number of collections arguments, and M is the number of memory kinds

Could we solve this with a generic optimization algorithm?

o Evolutionary mutation techniques, differential evolution, Nelder-Mead search, Torczon
hillclimbers...

Stanford University

Search Algorithms Comparison

HTR

8x8y9z 16x16yl8z

1 5 800
: 600 CCD Up to 1.57x

0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500
Search Time (sec) Search Time (sec)

~
w
o

~
=]
(=}

f=1]
o
o

(=]
o
o

w
o]
o

Execution Time per Iteration (milisec)
w
(=]
o

Y
[
o

&
o
o

Pennant OpenTuner spends up to
e 200 PRGN ~90% of the search time

: br suggesting invalid

mappings!

N
[t
o

[~
o
o

—
0
o

=
@
(=]

—
=
(=]

-
w
o

1504

-
B
o

Execution Time per Iteration (milisec)
ar
(=]

-
w
o

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 7000 80OD Stanford University

Search Time (sec) Search Time (sec)

Why a Custom Algorithm?

Aware of the relationship between mappings tasks and its collection arguments

Explore mapping to the same memory collection arguments that refer partially or
totally to the same data regions (overlap)

Stanford University

Constrained Coordinate Descent (CCD)

CD optimizes one dimension at a time avoiding the combinatorial explosion of
possibilities in high dimensional spaces
O(P™MCS) — O(PTCM)

CCD is multiple executions (i.e., rotations) of the CD with different levels of
colocation constraints

Stanford University

Coordinate Descent (CD) Search Algorithm

Starting point: mapping with all tasks on GPUs, all collections on Frame-buffer

CD loops over:
o Tasks from longest running to shortest

o Collection arguments from largest to smallest

CD makes one move at a time

Two possible moves:

O Move one task to a different processor (and its arguments to new memories)
O Move one collection argument to a different memory kind

Stanford University

Co-location Constraints for Coordinate Placement

Enforces overlapping collections arguments onto the same memory

Without constraints it is unlikely to explore mappings where overlaping
collections are co-located

Moves may cause cascading changes to a mapping

Stanford University

Co-location Constraints Representation

Graph:
O Nodes are <task, collection> tuples
O Edges represent overlap (i.e., they reference same portions of the data)
O Edge weight is the size of common data in bytes

Edges enforce same placement for the collections arguments
Task1 (€0, C1,C2) 2048
Task2 (€3, C4) _

Stanford University

Constrained Coordinate Descent (CCD)

Initial rotation has a high penalty for data movement
o All overlapping collection arguments are placed into the same memory (graph with all edges)

Relaxed as the search proceeds
o Periodically remove remaining lowest-weight edges that allows more freedom in data placement
o Gradually relaxed to balance the costs of compute and data movement

Captures important trade-off between tasks running as fast as possible
and minimize data movement

Stanford University

Constrained Search Example

Frame-buffer Memory

Zero-copy memory

Both tasks on CPU.

Task1 (€0, C1, C2)
Task2 (€3, C4)

I
"

CICPICPICD

System Memory

Stanford University

Constrained Search Example

CIECD

Frame-buffer Memory

Taskl (€0, C1, C2)

Zero-copy memory

Move Taskl to GPU.

Task2 (€3, C4) CPU

System Memory

Stanford University

Experiments

The benchmarks use Legion’s task-based programming model

2 machine configurations:
Shepard: 56-core Intel Xeon 8276 cpus and 1 Nvidia P100 per node.
Lassen: 40-core IBM P9 cpus and 4 Nvidia V100 per node.

Stanford University

Pennant

Lagrangian hydrodynamics simulation with 2128 possible mappings

1 node 4 nodes 8 nodes
157
m Custom Mapper ®AM-CCD
=
[}
o 1.38
Q.
I
= 1.3
=
>
8 123 1.22
a
- 1.15
0>.) 1.12 1.12
) 1.08 1.07
1.05) ’ 1.06 .05 1.05)
o 1.04 1.04
2 099 1.03 01 y101 10t® 1 101 10t 1.0 Lod 103,02 1
g o 0.97 0.971 0.98 0.98
[
Q.
320x90 320x180 320x360 320x720 320x1440 320x2880 320x360 320x720 320x1440 320x2880 320x5760 320x11520 320x720 320x1440 320x2880 320x5760 320x11520 320x23040

Small inputs: tasks assigned to OpenMP and collections to System Memory.
Large inputs: tasks assigned to GPU and collections to Frame-buffer Memory.

ZZIll Shepard Stanford University

HTR

Multi-physics solver with 21%° possible mappings

1 node 4 nodes 8 nodes

15 ®mCustom Mapper ®AM-CCD

= 1.44
[
Q
Qo
]
=
=
3
g
a
- 1.15
[
> 11
3 1.06 1.08 1.05
S 103 10304 10403 ‘
3 £.98 1 1 0.9 0.99 . 01o 98 0.99
o 0.96 0.9 9% .96 004 096
=3 0.93 A
8x8y9z 16x16y18z 32x32y36z 64x64y72z 128x128y144z 8x32y9z 16x64y18z 32x128y36z 64x256y72z 128x512y144z 8x64y9z 16x128y18z 32><128y362 64x256y72z 128x512y1441

OMP and Sys Mem — OMP and ZC — GPU and FB Mem with some in OMP+ZC — GPU and FB Mem

2l Shepard Stanford University

Multi-fidelity Ensemble CFD

System Memory

Zero-copy Memory

FB FB FB FB
| | | |
GPU GPU GPU GPU

Simulation

Stanford University

Multi-fidelity Ensemble CFD

Simulation

P

LFs mapping?

o, -

Sys n ZC

System Memory

Zero-copy Memory

FB FB FB FB
| | | |
GPU GPU GPU GPU

Stanford University

Multi-fidelity Ensemble CFD

mLFs on GPU+ZC wmLFsonCPU mAutoMap

1 means speed of HF
execution alone

0.97 0.97
0.93 0.93 0.93 0.93 0.93
085 0.84 .
Higher is
better
0.43

16 LFS 16 LFs 16 LFs 32 LFS 32 LFs 32 LFs
168 323 168 328

—p

Stanford University

Conclusions

AutoMap allows finding faster mappings with no user intervention

Consider the jointly mapping of data and tasks

Novel search algorithm that balances the trade-off costs between computation and
communication

Up to 2.41x over hand-written, custom mapper

Out-of-core mappings up to 50x faster than all on Zero-copy

Colocation constraints through coordinated placement instrumental for
finding better mappings

https://gitlab.com/thiagotei/automap

Stanford University

Stanford University >°

	Slide 1: Automated Mapping of Task-Based Programs onto Distributed and Heterogeneous Machines
	Slide 2: Mapping on Existing Heterogeneous Systems
	Slide 3: Mapping on Existing Heterogeneous Systems
	Slide 4: Mapping on Existing Heterogeneous Systems
	Slide 5: Mapping on Existing Heterogeneous Systems
	Slide 6: Mapping on Existing Heterogeneous Systems
	Slide 7: Concrete Example: Simulation OOM
	Slide 8: Naïve offloading vs AutoMap
	Slide 9: AutoMap
	Slide 10: AutoMap’s Workflow
	Slide 12: Optimization Problem
	Slide 13: Search Algorithms Comparison
	Slide 14: Why a Custom Algorithm?
	Slide 15: Constrained Coordinate Descent (CCD)
	Slide 16: Coordinate Descent (CD) Search Algorithm
	Slide 17: Co-location Constraints for Coordinate Placement
	Slide 18: Co-location Constraints Representation
	Slide 20: Constrained Coordinate Descent (CCD)
	Slide 21: Constrained Search Example
	Slide 22: Constrained Search Example
	Slide 23: Experiments
	Slide 24: Pennant
	Slide 25: HTR
	Slide 26: Multi-fidelity Ensemble CFD
	Slide 27: Multi-fidelity Ensemble CFD
	Slide 28: Multi-fidelity Ensemble CFD
	Slide 29: Conclusions
	Slide 30

