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Mapping on EXxisting Heterogeneous Systems
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Mapping on EXxisting Heterogeneous Systems
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Mapping on EXxisting Heterogeneous Systems
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Mapping on EXxisting Heterogeneous Systems
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Mapping on EXxisting Heterogeneous Systems

Thska 2128 possible mappings!!
Input- and machine-specific!

Y ~S Y ~ Hard to maintain!
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Concrete Example: Simulation OOM

Users may want to run simulations with bigger input than what fits in memory
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What collections to move off
of frame-buffer?
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Naive offloading vs AutoMap
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AutoMap

Automate the discovery of good mappings

O  Traverses the space of possible mappings and provides the fastest found

O Used in an offline search that tests different mappings

Discrete Search Space:

O  Processors kinds: {GPU, OMP} per task
O  Memory kinds: {Frame-buffer, Zero-copy, System} per data collection argument
Goals:
O  Performance: find better mappings than humans
O Portability: tune mappings to an architecture and/or input
O

Productivity: reduce manual work and help non-experts

Stanford University



AutoMap’s Workflow
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Optimization Problem

Search space can be immense
o O(PTMC) where P is the number of processor kinds, T is the number of tasks, C is the
number of collections arguments, and M is the number of memory kinds

Could we solve this with a generic optimization algorithm?

o Evolutionary mutation techniques, differential evolution, Nelder-Mead search, Torczon
hillclimbers...

Stanford University



Search Algorithms Comparison
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Why a Custom Algorithm?

Aware of the relationship between mappings tasks and its collection arguments

Explore mapping to the same memory collection arguments that refer partially or
totally to the same data regions (overlap)
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Constrained Coordinate Descent (CCD)

CD optimizes one dimension at a time avoiding the combinatorial explosion of
possibilities in high dimensional spaces
O(P™MCS) — O(PTCM)

CCD is multiple executions (i.e., rotations) of the CD with different levels of
colocation constraints

Stanford University



Coordinate Descent (CD) Search Algorithm

Starting point: mapping with all tasks on GPUs, all collections on Frame-buffer

CD loops over:
o  Tasks from longest running to shortest

o Collection arguments from largest to smallest

CD makes one move at a time

Two possible moves:

O  Move one task to a different processor (and its arguments to new memories)
O  Move one collection argument to a different memory kind

Stanford University



Co-location Constraints for Coordinate Placement

Enforces overlapping collections arguments onto the same memory

Without constraints it is unlikely to explore mappings where overlaping
collections are co-located

Moves may cause cascading changes to a mapping
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Co-location Constraints Representation

Graph:
O Nodes are <task, collection> tuples
O  Edges represent overlap (i.e., they reference same portions of the data)
O  Edge weight is the size of common data in bytes

Edges enforce same placement for the collections arguments
Task1 (€0, C1,C2) 2048
Task2 (€3, C4) _
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Constrained Coordinate Descent (CCD)

Initial rotation has a high penalty for data movement
o All overlapping collection arguments are placed into the same memory (graph with all edges)

Relaxed as the search proceeds
o Periodically remove remaining lowest-weight edges that allows more freedom in data placement
o Gradually relaxed to balance the costs of compute and data movement

Captures important trade-off between tasks running as fast as possible
and minimize data movement
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Constrained Search Example
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Constrained Search Example
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Experiments

The benchmarks use Legion’s task-based programming model

2 machine configurations:
Shepard: 56-core Intel Xeon 8276 cpus and 1 Nvidia P100 per node.
Lassen: 40-core IBM P9 cpus and 4 Nvidia V100 per node.
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Pennant

Lagrangian hydrodynamics simulation with 2128 possible mappings
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HTR

Multi-physics solver with 21%° possible mappings
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Multi-fidelity Ensemble CFD
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Multi-fidelity Ensemble CFD
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Multi-fidelity Ensemble CFD
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Conclusions

AutoMap allows finding faster mappings with no user intervention

Consider the jointly mapping of data and tasks

Novel search algorithm that balances the trade-off costs between computation and
communication

Up to 2.41x over hand-written, custom mapper

Out-of-core mappings up to 50x faster than all on Zero-copy

Colocation constraints through coordinated placement instrumental for
finding better mappings

https://gitlab.com/thiagotei/automap
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